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Abstract

Online and offline storage of digital currency present conflicting risks for a Bitcoin exchange. While

bitcoins stored on online devices are continually vulnerable to malware and other network-based

attacks, offline reserves are endangered on access, as transferring bitcoins requires the exposure of

otherwise encrypted and secured private keys. In particular, fluctuations in customer demand for

deposited bitcoin require exchanges to periodically refill online storage systems with bitcoins held

offline. This raises the natural question of what upper limit on online reserves minimizes losses due

to theft over time. In this article, we investigate this optimization problem, developing a model that

predicts the optimal ceiling on online reserves, given average rates of deposits, withdrawals, and

theft. We evaluate our theory with an event-driven simulation of the setup, and find that our equation

yields a numerical value for the threshold that differs by less than 2% from experimental results. We

conclude by considering open questions regarding more complex storage architectures.
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Introduction

On 5 January 2015, Bitstamp, the world’s third largest Bitcoin ex-

change [1], abruptly suspended operations. The UK-based service

had detected theft of 19 000 bitcoins, worth $5.1 million at the time

of press release [2]. In response to terrified customers and media

frenzy, Bitstamp’s CEO issued the following public statement:

This breach represents a small fraction of Bitstamp’s total bitcoin

reserves, the overwhelming majority of which are held in secure

offline cold storage systems. We would like to reassure all

Bitstamp customers that their balances. . .will not be affected and

will be honored in full. [2]

Though unperturbed by such incidents to date, Bitstamp’s

American counterpart – the San Francisco-based wallet and exchange

service Coinbase’s – assures a clientele spanning 24 countries:

Sleep Well Knowing Your Bitcoin Are Safe

Up to 97% of bitcoin is stored totally offline, in geographically

distributed safe deposit boxes and physical vaults. [3]

The public fears these statements aim to placate are not, in fact,

unfounded. Bitcoin theft is alarmingly prevalent, and impacts both

businesses managing vast reserves and individuals holding small

quantities of bitcoin on their personal computers. The mechanisms

of theft are numerous. Unsuspecting smartphone users often fall vic-

tim to malicious Android applications advertised as Bitcoin wallets

[4]. Bitcoins stored on devices connected to the Internet are fre-

quently compromised of various forms of malware [5], which

extract and transmit the private keys used to authorize Bitcoin trans-

actions.1 Patrons of well-known exchanges, including Coinbase,

often report lower-than-expected account balances, having been vic-

timized by hackers who acquired their login credentials [7]. And

major services, such as Bitstamp, periodically lose significant hold-

ings of bitcoin to security exploits in client-facing software; in some

cases, the responsible parties include company insiders [8].

Both Bitstamp’s and Coinbase’s public assertions also allude to a

second, critical aspect of Bitcoin management, and the central focus

of this study – the concept of offline and online storage. Whereas

storing bitcoins on devices connected to the Internet (online, or

1 Notably, an estimated 3.4 million instances of Bitcoin malware were

detected in 2014 [5], 22% of all financial malware [6].
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“hot,” storage) is traditionally discouraged, as it entails exposure to

malware contracted through the web and other network-based

attacks, offline (“cold”) storage involves its own hazards, specifical-

ly, the danger of compromise on access. For a Bitcoin exchange or

banking service that must consistently meet customer demand, this

results in a logistic dilemma. Storing too many bitcoins in hot stor-

age poses the obvious problem of increased losses due to recurrent,

network-based theft. But storing fewer bitcoins online necessitates

frequent access of cold storage to meet fluctuations in customer de-

mand. This in turn defeats the functional purpose of cold storage,

which is to exchange liquidity for increased security. In particular,

frequent access increases the probability of cold storage theft. This

second risk has been underemphasized in the current literature, to

the point that cold storage is increasingly portrayed as the definitive

solution to most problems in Bitcoin security. This tendency can be

seen in research papers [9], community documentation on Bitcoin

[10], and in public security claims by major companies [11, 12].

Contributions
In this article, we challenge the assumption that the only benefit to

storing bitcoins in hot storage is availability, by demonstrating that

maintaining some optimal value of online reserves in fact minimizes

losses due to theft. Our quantitative analysis confirms the idea that

storing too few bitcoins in hot storage results in an arrangement that

exposes the bulk of an organization’s reserves to a small but contin-

ual probability of theft, which – given the track record of Bitcoin

exchanges – can be catastrophic in the long run.

The heightened significance we attach to cold storage theft is

motivated by an empirical study of 40 major Bitcoin exchanges op-

erational at some point before January 2013, which found that 18

had ultimately shutdown, at least 5 of which had failed to reimburse

their customers [13]. In particular, while more popular exchanges

were less likely to shutdown, the likelihood of some kind of a secur-

ity breach was positively correlated with the transaction volume

handled by the exchange [13]. Though the details of these thefts are

generally unknown, several explicit cases of cold wallets being emp-

tied have been documented [8].

Given this evidence, we adopt a different approach to Bitcoin

theft. While previous work has focused on the cryptographic layer,

reducing the incidence of theft (see Section “Related work”), we in-

stead investigate the optimal utilization of existing security systems.

Our setup consists of a Bitcoin exchange that must service deposits

and withdrawal requests, while mitigating losses due to unavoid-

able, periodic theft of its hot and cold storage systems. Specifically,

we stipulate that cold storage theft occurs with a fixed probability

on access, while times to hot storage theft are exponentially distrib-

uted. We model deposits and withdrawals, on the other hand, as

Poisson processes. We then investigate the behavior of our system

over a long time interval ½0;T�, tracking the net balance of the ex-

change through internal and external events.

Notably, we propose a series of models that quantify the per-

formance of various subsystems of our setup, namely: (i) net income

into the exchange, (ii) hot storage with no offline backup, and (iii)

the full dual storage system. Our culminating result is a formula for

the expected net value of our exchange after T hours. This function

is then numerically optimized, yielding a value for an optimal ceiling

on online reserves which differs by less than 2% from empirical

results. We conclude by discussing more complex storage architec-

tures and their potential advantages.

Motivation
Mitigating losses due to Bitcoin theft is an undertaking of crucial im-

portance on several levels. First, Bitcoin’s success as an emerging

currency and alternative payment system is critically dependent on

public trust in its institutions. Public optimism about Bitcoin deter-

mines its current dollar valuation, motivates entrepreneurs to build

the tools that make Bitcoin useful for the general person, incenti-

vizes developers to contribute improvements to the Bitcoin protocol,

and spurs investment into security and privacy research. But public

opinion is also particularly sensitive to news of heists and shut-

downs, and to stories of major exchanges going bankrupt. As a re-

sult, Bitcoin theft not only affects its immediate victims – businesses

and their customers, but hurts the Bitcoin community at large and

hampers greater adoption of the currency.

A key economic principle is also at play. Losses due to theft

experienced by Bitcoin storage and exchange services are subsidized

by customers, through increased exchange fees and (in the future)

higher insurance premiums or lower interest rates. This in turn is a

disincentive for customers to store (i.e. invest) their savings in

Bitcoin services. One of the key factors driving Bitcoin’s growth

today is that it reduces frictions involved in traditional payment

mechanisms, by cutting out intermediary parties and automating

transactions. These benefits are nullified, however, if Bitcoin

remains a high-risk investment.

Background

Two aspects of Bitcoin are of crucial importance to this study.

The first is the concept of Bitcoin ownership, which is a crypto-

graphically enforced guarantee that is published in a global ledger.

The second is hot and cold wallet storage, a software and security

abstraction that underpins the everyday usage of Bitcoin.

Bitcoin ownership
An entity gains ownership of bitcoins by being the recipient of a

publicly broadcasted Bitcoin transaction, a record of which is con-

solidated and published in a global log (the blockchain) through a

decentralized, distributed mechanism (Bitcoin mining). A transac-

tion specifies both senders and recipients, referenced by their re-

spective 160-bit public addresses. Each public address is associated

with a public and private key pair; in fact, the public address is just

an encoded hash H of the public key PK. To send bitcoins to Bob,

Alice must digitally sign with her private (secret) key SKAlice a trans-

action of some value to Bob’s public address HðPKBobÞ. Alice’s digit-

al signature affirms that bitcoins previously transferred to her (i.e. to

HðPKAliceÞ) by some third entity, say Carol, now in fact belong to

HðPKBobÞ.
Note that an entity, such as an individual Alice or a banking ser-

vice Bob, may choose to create and be associated with multiple public

addresses. That entity is then responsible for protecting the corre-

sponding private key for each address. Misplacing or destroying a pri-

vate key results in an irrecoverable loss of any associated bitcoins, as

it prevents those bitcoins from ever being transferred. Crucially, bit-

coins can also be stolen. If a malicious entity Mallory learns of Alice’s

private key SKAlice, she can create and sign a transaction transferring

any associated bitcoins to one or more addresses owned by Mallory.

As of now, there exists no legal or cryptographic measure in the

Bitcoin protocol to reverse or even detect such transactions. Though it

is surprisingly easy to link clusters of highly active public addresses to

real world identities [14], determining the legitimacy of transactions

(beyond specific kinds of fraud, such as double spending) is outside

2 Journal of Cybersecurity, 2018, Vol. 0, No. 0

Downloaded from https://academic.oup.com/cybersecurity/advance-article-abstract/doi/10.1093/cybsec/tyy003/5066370
by guest
on 04 August 2018



the scope, and antithetical to the motivations, of the Bitcoin system.

This starkly contrasts fraudulent credit card activity, which, while a

rampant problem in the USA and a major public burden, is relatively

easy to challenge and reverse. In particular, while credit card users op-

erate in a system critically reliant on the incentives of reputation –

namely, that of credit card companies (business reputation) and credit

card holders (credit ratings), Bitcoin owners construct transactions

under a protocol that has exchanged institutional authority for

pseudonymity and decentralization. The result – that Bitcoin theft is

irreversible, and thus particularly damaging – is one of the major

motivating ideas for this study.

Hot and cold wallet storage
The second key concept underlying this study is that of hot and cold

wallet storage. A Bitcoin wallet is a container for one or more pri-

vate keys, often encrypted for confidentiality and stored in a secure

location. Though a Bitcoin wallet does not physically contain any

bitcoins, treating it as an account with a certain value is a useful ab-

straction that we will adopt in this article. Bitcoin wallets come in

many forms; common examples include an encrypted file on a hard

disk locked in a safe, a paper wallet with printed keys, an iPhone ap-

plication secured through a passphrase, and a secret sharing scheme

involving multiple, highly trusted agents in an organization.

A hot wallet is a collection of private keys stored on a device

connected to the Internet. Hot wallets provide convenience and ac-

cessibility, but at a cost, as network connection entails a greater risk

of compromise to external threats, from targeted spyware to sophis-

ticated, web-based attacks. For certain organizations and individu-

als, this may be a necessary price to pay. A high-frequency trader,

e.g. may require immediate access to her private keys to exploit tran-

sient fluctuations in currency value. A banking service, on the other

hand, may be bound to its customers, who expect availability of

deposited bitcoins. In general, hot wallets are secured through

proper encryption practices, anti-malware software, strict Internet

access policies, and specialization of the container device.

In contrast, a cold wallet consists of Bitcoin private keys stored

on an offline device. Cold wallets often involve additional, physical

barriers to access, and as such, are generally less vulnerable to out-

siders, barring break-ins. In a company or organization handling

Bitcoin reserves of high value, cold wallet access would likely be

limited to cleared and trusted employees, with no one individual

granted full privileges. Cold wallets may need to be accessed for a

number of reasons, including for routine inspection, to reinforce

existing security systems, and, of particular importance to this study,

to refill depleted hot wallets.

In particular, hot and cold wallets are vulnerable to theft in fun-

damentally different ways. A hot wallet on a computer perpetually

connected to the Internet, a reasonable worst-case assumption, is

continually exposed, even while the device is not in use. In contrast,

a cold wallet is put at risk on access, as signing a transaction with

the cold walletal private key requires temporarily peeling back the

layers of security encasing it. This difference in the threat model for

hot and cold wallets gives rise to the key security challenge involved

in protecting the reserves of a Bitcoin exchange.

Problem formulation

Consider the servicing requirements of a Bitcoin exchange, which

must accept or dispense bitcoin for fiat currency, or a banking ser-

vice, which must allow customers to deposit and withdraw bitcoins

at will from a common pool (the bankan fractional reserves). We

can model deposits and withdrawals as Poisson processes with rate

parameters kd and kw defined over a set time interval, such as hours.

For example, kd ¼ 80 corresponds to an average deposit rate of 80

bitcoins per hour.2 We assume that our service accrues bitcoin on

average (kd > kw), so that protecting accumulated customer reserves

is a serious concern for the organization. (Note that in practice these

parameters would be empirically determined, by extracting the rele-

vant averages from transaction statistics.)

In this study, we analyze the following simple two-wallet config-

uration (see Fig. 1). Our institution services deposits and with-

drawals from a hot wallet that is continually connected to the

Internet, and suffers theft, which empties the hot wallet, with

Poisson rate parameter kth
. For example, kth

¼ 0:002 would corres-

pond to an expected time of 21 days between hot wallet thefts. The

hot wallet is backed by a cold wallet, which contains the bulk of the

organization’s reserves and is accessed when necessary to refill the

hot wallet. Transferring bitcoins to the hot wallet exposes the cold

wallet to theft, as a stored private key must be invoked to sign the

Figure 1: Problem setup.

2 We use 1 Bitcoin as the unit for the Poisson rate parameters, for concep-

tual clarity, but the choice is arbitrary. In theory, transactions of value as

small as 1� 10�8 BTC, or 1 Satoshi, are possible, so our unit could just

as well have been satoshis.
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transaction. Since transfers are discrete events, cold wallet theft is

assumed to occur with probability ptc
on each access.

We consider a straightforward online algorithm in which when-

ever the hot wallet exceeds a threshold of l bitcoins, a transaction

H ! C is made, “overflowing” the excess bitcoins into the cold wal-

let. Note that such a transfer does not expose the cold wallet to

theft, as only the sender must provide a digital signature. However,

since the hot wallet is ordinarily exposed to theft, we assume that

such a transaction does not confer any additional risk. On the other

hand, when the hot wallet is emptied, the cold wallet must immedi-

ately refill it to l bitcoins through a C! H transaction.

This setup leads to an optimization problem that is the core focus

of this article. Given kd, kw, kth
, and ptc

, what value of l maximizes

the net balance in the organization’s hot and cold wallets after some

long time T? In particular, if l is high, the organization will lose

more to hot wallet thefts, as on average the hot wallet contains a

number of bitcoins that varies (positively) with l. But if l is too low,

then the cold wallet will need to be accessed more often, increasing

the incidence of the much more damaging cold wallet thefts. Note

that we assume that the interval ½0;T� is long enough for many hot

wallet thefts and several cold wallet thefts to have occurred, so that

the probability distribution of the net balance at T is a fair represen-

tation of the long-term performance of our algorithm.

Related work

Previous work on mitigating losses due to Bitcoin theft has focused

on designing protocols that make it more difficult for private keys to

be divulged and misused. This study centers on optimizing the de-

ployment of existing security systems, as opposed to proposing new

cryptography. We will first provide a brief overview of the back-

ground literature in mathematical finance that motivates our use of

Poisson processes to model the dynamics of a Bitcoin exchange.

Then, we will discuss three developments in Bitcoin wallet security

that form a crucial foundation for our work.

Modeling exchange dynamics
Our decision to model activity at a Bitcoin exchange using Poisson

processes has a precedent in the analysis of conventional financial

markets. In particular, aspects of limit order markets, which are

used to conduct a large fraction of electronic stock trading, are often

modeled as independent Poisson processes. Limit order markets are

characterized by three types of events – (i) limit orders, in which a

participant submits a bid to buy or sell a certain quantity at a speci-

fied, limit price, (ii) market orders, in which a participant submits a

bid to buy or sell a particular quantity at the best available limit

order, and (iii) cancellations, by which a participant can cancel an

outstanding limit order [15]. These events, known as order book

events, are catalogued in a limit order book, which tracks all out-

standing limit orders at any given time [15].

Stochastic models for limit order markets take as input the cur-

rent state of the order book, and statistics on order flow – specifical-

ly, the arrival rates of order book events [15]. Our modeling of

Bitcoin exchanges closely parallels this, as we too track, first, the

current state of the hot and cold wallets, and, second, the arrival

rates of deposit, withdrawal, and theft events. In the case of limit

order markets, the models output readings on market volatility and

loss distribution (used for risk management), predictions on order

flow and price movements (used by trading strategies), and recom-

mendations for optimal order execution (used by trading platforms)

[15]. In the case of Bitcoin exchanges, our models stipulate the

parameters of optimal, online storage algorithms, such as the thresh-

old at which to transfer Bitcoin between the hot and cold wallets.

One common approach to analyzing limit order markets is to

build a model for the state of the limit order book by separately con-

sidering arrivals of the six possible order events (limit buy/sell, mar-

ket buy/sell, cancel buy/sell) [15]. Similarly, in our analysis, we

specify a distribution for the hot and cold wallet balance by inde-

pendently considering the effects of deposit, withdrawal, and theft

events. In general, for order book dynamics, prices are not

Markovian, and arrival intensities depend on the state of the order

book; thus, arrival increments are neither independent nor station-

ary [15]. On the other hand, we make the simplifying assumption

that deposits, withdrawals, and thefts occur with fixed intensities.

(In reality, theft rates are likely correlated with the value of Bitcoin

stored at an exchange [13].) In both applications, however, inde-

pendence across order events is assumed to hold.

Under a framework proposed by Cont et al. (2010), market

orders arrive at independent and exponentially distributed times

with rate l, limit orders arrive at a distance i from the opposite best

quote with rate kðiÞ, and cancellations orders arrive at distance i

from the opposite best quote with rate hðiÞx, where x is the number

of outstanding orders [16]. This is the framework our analysis most

closely mirrors, as it assigns Poisson rate parameters kd, kw, and kth

to quantify deposit, withdrawal, and hot wallet theft intensities, re-

spectively. Other approaches include the use of self-exciting Hawkes

processes to model trading markets, a decision motivated by the ob-

servation that trade arrival times tend to be clustered [17], and the

application of the autoregressive conditional duration (ACD) model

for irregularly spaced time-series data, which assumes that arrival

intensities are conditionally dependent on the entire prior history,

and seeks to estimate the probability of a price quote arrival at any

given time t [18]. Published literature on Bitcoin exchange dynamics

is sparse, but there have been informal attempts to fit Bitcoin trade

arrivals to point processes, such as the self-exciting Hawkes process

(see [19] and [20]).

Multi-signature transactions
A multi-signature transaction is a transfer of Bitcoin involving an

address “owned” by multiple parties; more specifically, an address

associated with more than one private key. Multisig transactions are

typically implemented with m-of-n addresses, a protocol in which

signatures from m out of the n private keys associated with an ad-

dress are required for a transaction to be enacted. The security bene-

fits of such a scheme are readily apparent [21]. A 2-of-3 address, for

instance, allows an individual Alice to keep private keys associated

with a wallet over three separate devices [21]. Now, a malicious

party cannot access Alice’s bitcoins by simply hacking one of her

machines. In the case that a single device is compromised, Alice can

move her bitcoins to another safe address, by constructing a transac-

tion with her two remaining keys.

A Bitcoin exchange may also find it useful to maintain m-of-n

addresses, in order to regulate access to a hot wallet. Specifically, by

using multisig, the exchange can stipulate that only group action can

invoke transactions, without running the risk of locking itself out of

its own wallet (i.e. through the loss of a single private key). With

this setup, theft requires a collusion of multiple insiders, which is

significantly more difficult for a malicious party to arrange than the

compromise of a single point of security.
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Threshold signatures
The second development, the threshold signature scheme, is a nat-

ural progression of multisig transactions. The main innovation of

threshold signatures is that they allow several parties to demonstrate

joint control over a Bitcoin wallet, without using multiple private

keys [22]. In particular, a single private key is split and shared

among the wallet owners, so that some t out of n pieces are required

to construct a valid signature [22]. Notably, the cryptography

involved ensures that possession of even t – 1 pieces does not provide

any partial information (i.e. a speedup in a brute force attack) [23].

Unlike multisig transactions, threshold signatures constitute client-

side technology, as they are not built-in to the Bitcoin protocol.

The threshold signatures scheme has two primary benefits. First,

it preserves the pseudonymity of the signing parties, as only a single

collective address is published with each transaction [22]. Second, it

avoids restrictions inherent to Bitcoin scripts, such as limits on the

number of participants allowed in multisig transactions [22]. Several

threshold signature schemes for the ECDSA signature algorithm

used by Bitcoin have been proposed; see Mackenzie and Reiter [24],

Gennaro et al. [25], and Gennaro et al. [26].

Deterministic wallets
Lastly, we consider deterministic wallets. This is a Bitcoin wallet

architecture in which all private keys are derivable from a single

seed, through a one-way hash function [27]. While this may initially

appear to be a security hazard, note that holding all else constant, a

wallet with multiple, unrelated private keys is no more secure than a

wallet with a single “super key” in either case, a compromised wal-

let entails the loss of all its contents. The primary benefits of deter-

ministic wallets are that they (i) ensure that creating wallet backups

are easy, (ii) allow lost keys to be recovered, and (iii) naturally sup-

port the creation of new key/address pairs, a capability that may be

required from a privacy standpoint.

Of particular relevance to this study are hierarchical determinis-

tic (HD) wallets, support for which was implemented with the BIP

32 (Bitcoin Improvement Proposal 32) standard [27]. In this archi-

tecture, private keys are derived in a tree structure, with every key

except for the master key (which is derived directly from the seed)

linked to parent and child keys [27]. This structure, and the one-way

nature of key generation, allows tree “branches” to be delegated to

different departments or security systems in an organization, with-

out putting parallel branches at risk of compromise [27].

Perhaps the most powerful capability afforded by HD wallets is

the ability to separate the generation of new private keys from the

creation of their associated addresses [28]. To understand the utility

of this particular cryptographic innovation, consider an organiza-

tion that must consistently transfer bitcoins from a hot wallet to a

cold wallet, as in our setup. The organization may want to periodic-

ally create and use new cold wallet addresses, but doing so (trad-

itionally) requires connecting the cold wallet to the Internet,

generating public/private key pairs, and transferring the new batch

of addresses to the hot wallet [28]. This, besides being inconvenient,

involves repeatedly exposing the cold wallet to theft. Using HD wal-

lets, however, it is possible for the hot wallet to send bitcoins to a

new address that has not yet been invoked. Specifically, upon initial-

ization, the hot wallet receives a seed for address generation, while

the cold wallet is entrusted with the seed for private key generation

[28]. This setup allows the hot wallet to generate a series of

addresses with a one-to-one correspondence with private keys

known only to the cold wallet [28]. The hot wallet can then send bit-

coins at will to the kth address with the guarantee that when the

cold wallet is accessed, it will be able to redeem all transacted

bitcoins.

In our subsequent discussion on the optimal ceiling on hot wallet

reserves, we will assume that these constructs are implemented

wherever appropriate, as our analysis is consistent with, and builds

on, the security guarantees these protocols provide. Notably, we

will diverge from previous work on Bitcoin wallets, which has

focused on theft prevention, by assuming a different line of inquiry:

given that hot and cold wallets thefts are occurring consistently,

what high-level wallet structures can we propose to minimize net

losses over time? In analyzing system design, rather than security

fundamentals, we will operate at a layer of abstraction that, in our

opinion, has been neglected in the current literature, but is critical to

the long run viability of Bitcoin exchanges and banking services.

Approach

We seek to determine an optimal threshold l so as to minimize

losses due to hot and cold wallet theft over ½0;T�. Since deposits,

withdrawals, and hot wallet thefts are Poisson processes, we will in

general be dealing with probability distributions. In this preliminary,

motivating analysis, however, we consider expected value. If we let

BðlÞ represent the expected balance in the wallets at time T, then by

linearity of expectation it is reasonable to expect

BðlÞ ¼ Ex½D�W� � c1l
a � c2

lb
where a; b > 0 (1)

This equation requires some unpacking. By Ex½D�W� we de-

note the expected value of net arrivals into the wallets, where D and

W are random variables representing the total value of deposits and

withdrawals, respectively, over ½0;T�. The second term, c1la, repre-

sents expected losses due to hot wallet theft, which we anticipate to

be positively correlated with the threshold l (while the number of

hot wallet thefts is not dependent on l, the expected loss associated

with a single theft is). Finally, c2

lb represents expected losses due to

cold wallet theft. We expect this term to be negatively correlated

with l since a higher threshold implies less frequent hot wallet

refills. Note that we have suppressed the implicit dependence of c1

and c2 on T for the sake of clarity.

If hot wallet and cold wallet thefts are indeed positively and

negatively correlated with l, respectively, as we expect, then it

should be possible to optimize B with respect to l

dBðlÞ
dl

¼ �c1ala�1 þ c2b
lbþ1

¼ 0 (2)

l ¼

ffiffiffiffiffiffiffi
c2b
c1a

aþb

s
(3)

That such an optimal threshold exists is also suggested by empir-

ical results. To test our theoretical models, we developed an event-

driven simulation of the setup, which yielded experimental values

for the net balance of the hot/cold wallet system after a fixed time T.

In particular, we chose convenient sets of values for kd, kw, kth
, and

ptc
, and drew pseudorandom numbers (i.e. java.util.Random) from

the exponential distribution to generate waiting times to deposits,

withdrawals, and hot wallet thefts. We set T to be 200 times the

expected time to a hot wallet theft (and chose ptc
so as to ensure that

at least several cold wallet thefts would occur). We then tracked the

balance of the hot and cold wallet over ½0;T�, handling both external

events (requests and thefts) and internal events (transfers) appropri-

ately. This procedure was repeated for a range of values for l,
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yielding the results seen in Fig. 2. Note that each data point ðl;BÞ
represents an average over 1000 iterations of the simulation for

kd ¼ 80; kw ¼ 78; kth
¼ 0:01, and ptc

¼ 0:01.

The graph (Fig. 2) clearly indicates that the net balance B peaks

at a value of l slightly over 110 (the absolute maximum occurs at

l¼114), below and above which it falls to 0. These simulation

results offer a preliminary confirmation of our hypothesis that losses

due to cold wallet and hot wallet thefts are inversely related, and

that an optimization problem in fact exists.

In this study, we develop the theory to precisely formulate this

optimization problem, and seek an understanding of the probability

mass function PðB ¼ kjkd; kw; kth
;ptc
Þ describing the total balance at

T (of which BðlÞ is the expected value). In particular, we determine

the explicit nature of the terms in Equation (1) describing deposits,

withdrawals, and losses due to theft, as part of a complete model

capable of predicting the optimal value of l for any given values of

kd, kw, kth
, and ptc

.

Theory

Net income
We begin by analyzing the Poisson processes that describe deposits

and withdrawals. The Poisson distribution gives the probability that

a random variable D denoting the number of deposits (or a random

variable W denoting the number of withdrawals) takes on a particu-

lar value k. If kd and kw are the mean hourly deposit and withdrawal

rates, then in any hour

PðD ¼ kÞ ¼ kk
de�kd

k!
(4)

PðW ¼ kÞ ¼ kk
we�kw

k!
(5)

We now make an important claim: theft affects accumulated

wealth in our wallets, so we care only about net income I ¼ D�W.

We will emphatically not need to reason about deposits and with-

drawals as independent processes.

Unfortunately, net income I ¼ D�W is not a Poisson process,

and its probability distribution cannot be modeled as such. A simple

counterexample: D – W can be less than 0, but Poisson processes de-

scribe only positive numbers of arrivals.

Instead, D – W follows the Skellam distribution, a probability

distribution that describes the difference of two Poisson random var-

iables N1 and N2 with rate parameters k1 and k2 [29]. As suggested

by intuition, the associated probability function attains its max-

imum (and expected) value at k1 � k2 (see Fig. 3).

In our case, the probability function describing net income I ¼ D

�W is given by summing over all (d, w) pairs such that d �w ¼ k.

Since deposits and withdrawals are independent processes, the prob-

ability that D¼d and W¼w, for any given pair (d, w), is just the

product PðD ¼ dÞPðD ¼ wÞ

PðD�W ¼ kjkd; kwÞ ¼

X1
d¼k

kd
de�kd

d!

kd�k
w e�kw

ðd � kÞ! k � 0

X1
d¼0

kd
de�kd

d!

kd�k
w e�kw

ðd � kÞ! k < 0

8>>>>><
>>>>>:

(6)

where we consider the two cases where deposits exceed withdrawals

(k � 0) and withdrawals exceed deposits (k < 0) separately. These

can be combined as follows:

PðD�W ¼ kjkd; kwÞ ¼ e�ðkdþkwÞ
X1

d¼max½0;k�

kd
d

d!

kd�k
w

ðd � kÞ! (7)

This mass function describes the probability that in any given hour,

k Bitcoins arrive in net, after withdrawals are subtracted from deposits.

Using it, we will now construct a series of models, incrementally intro-

ducing elements of the original problem to a preliminary setup consist-

ing of only the hot wallet and excluding all thefts.

Model 1: Hot wallet only, unlimited capacity, no thefts
Let us suppose that the organization services all deposits and with-

drawals from a hot wallet, but does not use a supporting cold wallet

to secure excess bitcoins. Let us further assume (temporarily) that

hot wallet theft is not a concern. A natural question arises: what is

the probability mass function, PðBðTÞ ¼ kjkd; kwÞ of the net balance

of the hot wallet after a long time T?

Since Poisson processes exhibit the properties of independent

and stationary increments, the rate parameters kd and kw scale lin-

early with time. So we can replace kd and kw with kdT and kwT, re-

spectively in the probability mass function derived earlier

PðBðTÞ ¼ kjkd; kwÞ ¼ e�ðkdþkwÞT
X1

d¼max½0;k�

ðkdTÞd

d!

ðkwTÞd�k

ðd � kÞ! (8)

In our subsequent analysis, we will use this function as a black

box to describe net inflow into our hot wallet; specifically, we will

Figure 2: Net balance BðlÞ vs. threshold l.

Figure 3: Skellam distribution [30]. Probability mass functions for various val-

ues of k1 and k2.
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use the term PDkðtÞ to represent the probability that a net arrival of

k bitcoins occurs in time t, where PD represents the Poisson differ-

ence, or Skellam, function.

Note that it is possible for an empty hot wallet to encounter

withdrawal requests, which, without a supporting cold wallet, it

would not be able to fulfill. For now, however, we will allow the ab-

straction of a negative hot wallet balance.

Model 2: Hot wallet only, hot wallet theft with rate kth

We can ask the same question: given that hot wallet theft is occur-

ring with rate kth
, what is the probability function, PðBðTÞ ¼

kjkd; kw; kth
Þ, of the net balance at T?

We begin by noting that the time between hot wallet thefts is

given by the exponential distribution.

Pðnext theft at time tÞ ¼ kth
e�kth

t (9)

Here we make the important observation that a hot wallet theft

resets the state of our system, leaving the hot wallet with 0 bitcoins,

as at the start. Then all bitcoins in the hot wallet at T are due to

deposits and withdrawals since the time of last theft.

To determine the probability function describing the time of last

theft, we use the fact that Poisson processes are memoryless. This is

the surprising property of the exponential distribution that asserts

that the waiting time t to the next arrival (theft) is not dependent on

prior history, namely the time s we have already waited. Formally, if

X is a random variable denoting the time to the next hot wallet theft

PðX > sþ tjX > sÞ ¼ P X > sþ t \ X > sð Þ
PðX > sÞ

¼ PðX > sþ tÞ
PðX > sÞ

¼ e�kth
ðsþtÞ

e�kth
s

¼ e�kth
t

(10)

Clearly the survival function (the probability that no theft occurs

before time sþ t) has no dependence on s.

We now claim that the probability that the last theft occurs at

time T – t is simply

Pðlast theft at time T � tÞ ¼ kth
e�kth

t (11)

Proof. The last theft on ½0;T� is the first theft on ½T; 0�. The

waiting time t to the first theft on ½T; 0� has no dependence

on “prior” thefts (i.e. the time s from the “previous” theft).

Let X denote the time to the first theft on ½T;0�. Then

PðX ¼ sþ tÞ ¼ d

dt
PðX � sþ tÞ

¼ d

dt
ð1� PðX > sþ tÞÞ ¼ � d

dt
e�kth

ðtþsÞ ¼ kth
e�kth

ðtþsÞ
(12)

It follows that

PðX ¼ sþ tjX > sÞ ¼ PðX ¼ sþ tÞ
PðX > sÞ

¼ kth
e�kth

ðtþsÞ

e�kth
s

¼ kth
e�kth

t

h

Now, the probability density function for the hot wallet balance

at T is given by an integral over possible times of last theft T – t,

plus a term for the (rare) case in which no hot wallet theft occurs in

½0;T�. For each possible theft time, the balance at T is determined by

the number of net arrivals between T – t and T.

PðBðTÞ ¼ kjkd; kw; kth
Þ ¼

ðT

0

ðkth
e�kth

tÞPDkðtÞ dt þ e�kth
TPDkðTÞ

(13)

Note that the integrand is the probability that two independent

events take place: (i) the last hot wallet theft occurs at time T – t and

(ii) k net arrivals occur in time t.

Equation (13) is a key observation. The probability density func-

tion PðBðTÞÞ provides a complete picture of the performance of a

single hot wallet supporting deposits and withdrawals, and subject

to recurring thefts. In the full theory that we now develop, we will

borrow from this model the critical idea that thefts reset the state of

our system.

Model 3: Hot and cold wallets
In this section, we consider the complex problem of a dual wallet

system. We begin by reintroducing the following attributes of the

original setup: (i) if the hot wallet reaches a threshold of l bitcoins,

we overflow the excess currency into the cold wallet, (ii) if the hot

wallet is emptied (by theft or by ordinary depletion), we move l bit-

coins from the cold to the hot wallet, and (iii) refilling the hot wallet

results in cold wallet theft with probability ptc
. We seek a closed

form expression for the final balance at T, so that we can optimize

this quantity with respect to the threshold l.

A first approach may be to analyze the balances of the hot and

cold wallets separately, keeping track of the C! H and H ! C

transfers. These transfer times, however, are determined by continu-

ous probabilistic processes (deposits, withdrawals, hot wallet theft)

constrained by the discrete boundaries 0 and l. As a result, the prob-

ability function describing the time of the kth transfer is dependent on

the probability functions of the previous transfer times.

An alternative strategy is to disregard most interactions between

the wallets, and instead consider the three global processes that de-

termine the final balance: net arrivals (deposits minus withdrawals),

losses due to hot wallet theft, and losses due to cold wallet theft.

Note that the first two processes have no dependence on the state of

the hot wallet, unlike transfer times, and are thus straightforward to

model. We have thus isolated the complexity of our problem to the

third process.

Quantifying cold wallet theft requires us to consider the fre-

quency of C! H transfers, which occur whenever the hot wallet

contains 0 bitcoins. If we model the hot wallet balance H as a con-

tinuous time random walk, then the expected time to reach H¼0

(empty) from the starting point H ¼ l (full) is precisely the expected

time to a C! H transfer (see Fig. 4).

Formally, we wish to find Xl, given that Xk represents the

expected time to empty from H¼k. We can write a recurrence rela-

tion for Xk by considering the state of the system after a small time

interval t. One of four events can happen in t:

Event State Transition Probability

Deposit Xk!Xkþ1 kdt

Withdrawal Xk! Xk�1 kwt

Hot Wallet Theft Xk!X0 kth
t

No Event Xk! Xk 1� ðkd þ kw þ kth
Þt
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Note that we are making the first-order approximation that only

one event can occur in t. This is valid in the limit t! 0. Then the

following recurrence must hold

Xk ¼ t þ ðkdtÞXkþ1 þ ðkwtÞXk�1 þ ðkth
tÞX0 þ ð1� ðkd þ kw þ kth

ÞtÞXk

(14)

subject to the boundary conditions

X0 ¼ 0 (15)

Xl ¼ t þ ðkwtÞXl�1 þ ðkth
tÞX0 þ ð1� ðkw þ kth

ÞtÞXl (16)

Combining like terms and dividing through by the time param-

eter t, we rewrite Equation (14) as follows

0 ¼ kdXkþ1 � ðkd þ kw þ kth
ÞXk þ kwXk�1 þ 1 (17)

Note that this is a nonhomogeneous, second-order recurrence re-

lation. Its general solution is a linear combination of homogeneous

and particular solutions. In this case, the particular solution is a

constant

Xk ¼
1

kth

(18)

while the homogeneous solutions are roots of the characteristic

polynomial

kdx2 � ðkd þ kw þ kth
Þxþ kw ¼ 0 (19)

namely

x ¼
ðkd þ kw þ kth

Þ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkd þ kw þ kth

Þ2 � 4kdkw

q
2kd

(20)

The general solution to Equation (17) is then

Xk ¼
1

kth

þ a1ðx1Þk þ a2ðx2Þk (21)

To find the constants a1 and a2 we impose the boundary condi-

tions. We first rewrite condition 16 as

ðkw þ kth
ÞXl ¼ 1þ kwXl�1 (22)

Then substituting our general solution into Equations (15) and

(16) yields

X0 ¼
1

kth

þ a1 þ a2 ¼ 0 (23)

ðkw þ kth
Þ 1

kth

þ a1ðx1Þl þ a2ðx2Þl
� �

¼ 1þ kw
1

kth

þ a1ðx1Þl�1 þ a2ðx2Þl�1

� �
(24)

Solving this system for a1 and a2

a1 ¼
1

kth

h
kwðxl

2 � xl�1
2 Þ þ kth

xl
2

i
h
kwðxl

1 � xl�1
1 Þ þ kth

xl
1� � ½kwðxl

2 � xl�1
2 Þ þ kth

xl
2

i (25)

a2 ¼
� 1

kth

h
kwðxl

1 � xl�1
1 Þ þ kth

xl
1

i
h
kwðxl

1 � xl�1
1 Þ þ kth

xl
1� � ½kwðxl

2 � xl�1
2 Þ þ kth

xl
2

i (26)

Substituting a1 and a2 into our general solution, letting k ¼ l,

and simplifying

Xl ¼
1

kth

þ 1

kth

kwðx2 � x1Þðx1x2Þl�1h
kwðx1 � 1Þ þ kth

x1

i
xl�1

1 �
h
kwðx2 � 1Þ þ kth

x2

i
xl�1

2

0
B@

1
CA

(27)

This, finally, is the closed form expression for the expected time

to an empty hot wallet (and thus to a C! H transfer). Notably, Xl

plotted as a function of l exhibits the properties of a logistic equa-

tion. (The resemblance is clearer if the numerator and denominator

are divided by ðx1x2Þl�1.)

In particular, the function grows rapidly in a region l1 < l < l2,

and then flattens out, approaching an asymptote of Xl ¼ 1
kth

(see

Fig. 5). This behavior is precisely what intuition would suggest.

Given our assumption that kd > kw, as l becomes larger, it becomes

unlikelier that net withdrawals, even over a period of atypical activ-

ity, can empty the hot wallet. Then the dominating factor driving H

to 0 becomes hot wallet theft, which empties the hot wallet on

Figure 4: Hot wallet balance vs. time (seconds). Parameter values: l ¼ 50;

kd ¼ 79; kw ¼ 78; kth
¼ 0:001. Figure 5: Expected time to empty Xl vs. threshold l (Equation (27)).

Parameter values: kd ¼ 80; kw ¼ 78; kth
¼ 0:001.
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expectation every 1
kth

hours. This is the bound that Xl tends to as l

approaches infinity.

Values for Xl predicted by this model determine an accurate

trend line for the empirical results yielded by an event driven simula-

tion of the hot wallet balance (see Fig. 6). As in the previous simula-

tion, waiting times to the next deposit, withdrawal, and hot wallet

theft are computed by selecting pseudorandom numbers from the

exponential distribution. Each simulation data point ðl;XlÞ corre-

sponds to the mean time to empty over 1000 iterations of the con-

tinuous time random walk.

While the simulation results exhibit greater variance for larger

values of l, Fig. 6 clearly indicates that they are clustered around or

on the theoretical values over the whole domain. Note also that for

the larger value of kd � kw (Fig. 6b), Xl reaches its asymptote faster.

This trend, too, is in line with intuition. When deposits far exceed

withdrawals, it becomes unlikelier that the hot wallet can be emp-

tied by aberrations in net arrivals. As a consequence, hot wallet theft

becomes the dominating factor earlier.

Results

We are now in a position to present our culminating result – an expres-

sion for the expected net balance at time T. The key idea we invoke is

that cold wallet thefts reset our system, in a manner analogous to hot

wallet theft in Model 2. In particular, cold wallet thefts only occur after

C! H transfers; C! H transfers, in turn, only occur if the hot wallet

is empty. Thus, after a cold wallet theft, both wallets contain 0 bitcoins,

which is precisely the state of the system at T¼0.

It follows that all bitcoins in the wallets at T accumulated since

the time of last cold wallet theft t0. The expected time to this last

theft (looking backward from T) is just the product of the expected

time to a C! H transfer, Xl and the expected number of transfers

before a theft occurs 1
ptc

, or
Xl

ptc
.

To determine the net balance after t0, we must account for net in-

come D – W and expected losses to hot wallet theft in ½t0;T�. In particu-

lar, by noticing that the system resets with cold wallet theft, we have

rendered losses due to cold wallet theft irrelevant to our calculation.

Net income
Net income is given by the Skellam (Poisson difference) function P

DkðtÞ from Section “Theory”, which describes the probability of k

net arrivals in time t. The expected value of PDkðtÞ is, as intuition

suggests, simply ðkd � kwÞt. Then the expected net income in ½t0;T�
is ðkd � kwÞ Xl

ptc
.

Hot wallet theft losses
The expected losses due to hot wallet theft is a product of (i) the

expected loss due to a single hot wallet theft and (ii) the expected

number of hot wallet thefts in ½t0;T�.
Quantity (i) is the expected value of the hot wallet balance just

before hot wallet theft occurs, a value we know little about. We can

expect, however, that it will be some fraction c of the hot wallet

threshold l. Then (i) is just cl, where 0 < c < 1.

Quantity (ii) is the expected number of arrivals in a Poisson pro-

cess. This is simply the rate parameter kth
scaled over the given time

interval, or kth

Xl

ptc
.

The expected balance
Combining these results, the expected net balance at T is

B ¼ ðkd � kwÞ
Xl

ptc

� clð Þ kth

Xl

ptc

� �
(28)

We can compare the values for BðlÞ predicted by this formula

with those produced by our computer model, first described

in Section “Approach” to motivate this analysis, which simulates

the behavior of the dual wallet system over a long time

interval ½0;T�. A strong match in the theoretical and empirical

results is evident when c ¼ 0:84 in Equation (28) above (see Fig. 7).

Notably, Equation (28) allows us to numerically determine the

value of the optimal threshold for a given set of parameters. To illus-

trate this, we provide the precise data points yielded by our theoret-

ical model for 109 � l � 115 in Table 1.

Note that the balance reaches a maximum of 7987.78 bitcoins at

l¼113. This predicted optimal threshold differs by less than 1%

Figure 6: Expected time to empty Xl theory (Equation (27)) vs. event-driven simulation. (a) kd ¼ 79; kw ¼ 78; kth
¼ 0:001 (b)kd ¼ 85; kw ¼ 78; kth

¼ 0:001.
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from the empirical maximum of l¼114 and by less than 2% from

the local maxima of a polynomial interpolation of the simulation

data, l ¼ 111:05.

Further work
In an immediate follow-up to this study, we plan to address two

concerns regarding Equation (28). First, we hope to establish that

the time of last cold wallet theft and the magnitude of net arrivals

after that time are indeed independent, an assumption that underlies

the first term in Equation (28). This independence was apparent in

the isolated hot wallet model, as hot wallet theft, deposits, and with-

drawals are physically distinct Poisson processes, but remains to be

proved for the dual wallet system.

Second, we hope to theoretically determine c, the expected bal-

ance of the hot wallet over instances of hot wallet theft. In this

study, c was extrapolated from simulation results. Ideally, however,

we would like Equation (28) to be a function of kd; kw; kth
, and ptc

alone. We are optimistic that further analysis of the random walk

governing the hot wallet balance may yield a closed form expression

for c in terms of our fundamental parameters.

Applications and extensions

Calibrated threshold
A real-world Bitcoin exchange or banking service may observe that

customer deposit and withdrawal requests to exhibit predictable

trends. For example, the volume of Bitcoin transactions may peak at

certain times of the day (e.g. after the opening of the New York

Stock Exchange), shadow the price of the dollar, or demonstrate

periodicity. In fact, there is strong evidence that Bitcoin transaction

rates exhibit weekly and daily cycles, with troughs in transaction

volume seen on Saturdays and Sundays, and daily peaks observed

between 16:00 and 22:00 UTC, the time of day in which exchanges

on the US East Coast and Western Europe are active [31].

A second category of fluctuations to which an organization may

be able to respond are those triggered by major events in the Bitcoin

ecosystem. Deposits may plummet in the weeks following the shut-

down of a major exchange, as seen after Mt. Gox, or skyrocket in

the wake of a cyberattack targeting personal computers. An organiza-

tion may also wish to respond to internal events, such as an increased

incidence of hot wallet theft or heightened cold wallet security. In cir-

cumstances in which recent history can be used to make viable predic-

tions, and in which customer behavior fluctuates significantly, a

calibrated threshold scheme may prove particularly useful.

The scheme is a straightforward application of the main idea of

this study. An organization maintains a history block that contains a

record of (i) hourly deposits, (ii) hourly withdrawals, (iii) C! H

transfers, (iv) hot wallet thefts, and (v) cold wallet thefts for the past

k hours. The history block is organized as five parallel, time-indexed

arrays of length k, and is updated cyclically so that a new record

overwrites one created k hours ago. This data is then used to recom-

pute kd, kw, kth
, and ptc

, which are simply hourly rates, and thus up-

date the capacity of the hot wallet each hour. Such a scheme would

allow a company to maintain a threshold on online reserves that is

optimal, given recent history. A hybrid approach which assigns

greater weight to more recent ðkd; kw; kth
;ptc
Þ tuples, but includes all

of an organization’s data, is also clearly feasible, and would yield

results that reflect both macroscopic trends and recent history.

Multiple wallet systems
In this section, we consider the broader goal of an optimal online al-

gorithm and storage scheme for servicing requests and holding

Bitcoin reserves. In doing so, we are motivated by two main ideas.

First, we note that the approach presented in this study, which cen-

ters on probabilistic analysis of net outcomes, allows us to compare

the performance of different servicing algorithms. This raises the

natural question of what alternative systems are possible. Second,

we seek to address a major shortcoming of the two wallet model:

refilling the hot wallet endangers the bulk of our organization’s

reserves, even though it requires only a fraction of the bitcoins in the

cold wallet.

“Retirement fund” wallets
Our first proposal involves tracking excess bitcoins (deposits into a

hot wallet holding l bitcoins) into one of two cold wallets. In par-

ticular, a large fraction k of the overflow is transferred into a

“savings account,” a cold wallet that holds the majority of the

organization’s reserves; the remainder is deposited in a “checking

account”, a cold wallet responsible for refilling the hot wallet when

needed. Note that it is possible that the checking account may itself

need to be refilled; in this case, the savings account must reimburse it,

and we once again are faced with our old problem. The system is still

an improvement over the two wallet model, however, as it reduces the

frequency with which large holdings of Bitcoin are accessed.

A quantitative analysis of this algorithm must determine three

parameters: the hot wallet threshold, lh, the checking account

threshold, lc, and the fractions k and 1� k of excess bitcoins that

are tracked into the savings and checking account, respectively.

Figure 7: Net balance BðlÞ theory (Equation (28)) vs. event-driven simulation.

Parameter values: kd ¼ 80; kw ¼ 78; kth
¼ 0:01; ptc ¼ 0:01

Table 1. Balance vs. threshold (Equation (28))

Threshold (l) Balance

109 7970.11

110 7978.10

111 7983.69

112 7986.90

113 7987.78

114 7986.36

115 7982.68
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Pyramid model
The pyramid model is a natural progression of the “retirement

fund” idea just proposed. The structure involves a single hot wallet

W1 and a series of cold wallets W2 through Wn. Each wallet Wk

overflows into Wkþ1, when Wk exceeds a threshold lk, and is re-

sponsible for replenishing wallet Wk�1, when Wk�1 is emptied. We

claim that wallets closer to the hot wallet (i.e. near the “top”. of the

pyramid) are accessed at least as frequently as those farther removed

from the hot wallet (at the “bottom”). (In practice, wallets at the

top should be accessed much more frequently.)

Proof. Suppose that the hot wallet W1 must be replenished r

times in a time period ½0;T�. Then W2 is accessed r times,

and will need to be replenished r0 � r times, as it loses bit-

coins on only those r occasions. The claim follows by induc-

tion on k. Note that if we further condition that �kþ1 > �k (a

reasonable assumption), then a strict inequality r0 < r holds. h

It follows that each successive wallet Wkþ1 should hold more bit-

coins than Wk. The optimal value lk for each wallet remains an

open question for a follow-up study. Note that if wallet Wk holds on

average c2k bitcoins, half of the organization’s bitcoins are, on ex-

pectation, in the bottom cold wallet, and almost 90% in the bottom

three. Thus the pyramid model may indeed successfully address our

motivating concern, by divorcing the servicing of requests (i.e. refill-

ing the hot wallet) from the maintenance of reserves.

Note that in proposing both the retirement fund and pyramid

models, we assume that it is possible to diversify access control to

some extent. In particular, if an organization can support only k in-

dependent security systems (i.e. trusted individuals, secure safes,

etc.), then it confers no additional benefit to maintain more than k

wallets, as the compromise of one system endangers all wallets

entrusted to it. This is a very necessary physical constraint to im-

pose; without it, the most secure model would potentially involve

sending each deposit to a distinct Bitcoin wallet.

Technological advances
New work in the area of Bitcoin and systems security has the poten-

tial to change the nature of the internal–external security tradeoff in-

herent to the hot wallet–cold wallet model. In particular, the rise of

more sophisticated multi-address wallets that do not put at risk an

organization’s entire reserves when invoked would lessen the impact

of cold wallet theft (if a private key is divulged, only Bitcoin associ-

ated with that key is lost), and shift schemes toward more frequent

cold wallet access. To preserve the abstraction of a single wallet,

such a cold wallet would still contain a complete set of k private

keys, but may only reveal new keys if certain conditions are met or

at fixed time intervals (e.g. no more than once per week). The result

would be a single cold wallet that functions like a set of multiple, in-

dependent wallets, where a theft event only endangers a fraction of

the total holdings. Building such a wallet may potentially require

developing new cryptography.

On the other side of the spectrum, better defenses against mal-

ware and phishing attacks, via, e.g. a more secure browser or a more

sandboxed operating system, could render hot wallets safer, tilting

policies in favor of online storage. Such developments could stem

from advances in software verification, network security, or operat-

ing systems design. Innovation in these areas would make it safer to

store private keys on machines that are connected to the Internet

and capable of running arbitrary code (most modern computers). In

practice, the largest gains may be realized simply by putting in place

better policies, such as using specialized servers for issuing Bitcoin

transactions and strictly regulating web-related activity on these

machines.

Conclusion

In this article, we proposed an equation for the expected balance of

a hot and cold wallet system over a period of indeterminate length,

given empirically determined Poisson parameters describing depos-

its, withdrawals, and hot wallet theft. This equation yielded an opti-

mal value for the hot wallet threshold that fell within 2% of

simulation results, thus resolving the motivating question of this

study.

For particular subsystems, such as the single hot wallet, we were

able to provide a complete characterization, namely a probability

distribution on the net balance. For other systems, including the con-

tinuous time random walk and the final dual wallet structure, our

theoretical models yielded the trend lines around which our empiric-

al results were centered.

We ended with a discussion of multiple wallet systems, in par-

ticular a “pyramid wallet” model in which an organization employs

several layers of offline storage. We are optimistic that our analysis

of the dual wallet system may apply to each pair of wallets in this

structure, yielding results for the optimal threshold at each pyramid

level. This remains an open question for a subsequent study.

With this article, we hope to open discussion on an aspect of

Bitcoin security that has received little coverage until now: the de-

sign of higher-level Bitcoin wallet systems. Our work addresses a

fundamental question regarding the online and offline storage of

digital currency, and has the potential to influence the design of

real-world systems built to safeguard the savings of Bitcoin users.

Funding

S.J. is supported in part by the Department of Computer Science at Princeton

University. S.G. is supported in part by the National Science Foundation

Graduate Research Fellowship under Grant No. DGE 1148900.

References

1. Bitcoin Charts, 2015. http://www.bitcoincharts.com/markets/ (28

December 2017, date last accessed).

2. Higgins S, 2015. Bitstamp Claims $5 Million Lost in Hot Wallet Hack.

http://www.coindesk.com/bitstamp-claims-roughly-19000-btc-lost-hot-

wallet-hack/ (28 December 2017, date last accessed).

3. Coinbase, 2015. Bitcoin Vault - Coinbase. https://www.coinbase.com/

vault (28 December 2017, date last accessed).

4. Kaspersky Labs, 2013. Financial Cyber Threats in 2013. Part 2: Malware.

http://securelist.com/analysis/kaspersky-security-bulletin/59414/financial-

cyber-threats-in-2013-part-2-malware/ (28 December 2017, date last

accessed).

5. Kaspersky Labs, 2014. Kaspersky Lab Report: Financial Cyberthreats

in 2014. https://media.kasperskycontenthub.com/wp-content/uploads/

sites/43/2018/03/08064525/KSN_Financial_Threats_Report_2014_eng.

pdf (28 December 2017, date last accessed).

6. Hajdarbegovic N, 2014. Report: Bitcoin Targeted in 22% of Financial

Malware Attacks. http://www.coindesk.com/report-bitcoin-targeted-22-fi

nancial-malware-attacks/ (28 December 2017, date last accessed).

7. Brandom R, 2014. A String of Thefts Hit Bitcoin’s Most Reputable

Wallet Service. The Verge, http://www.theverge.com/2014/2/7/5386222/

a-string-of-thefts-hit-coinbase-bitcoins-most-reputable-wallet-service (28

December 2017, date last accessed).

8. Bitcoin Forum, 2014. List of Bitcoin Heists. https://bitcointalk.org/index.

php? topic¼576337 (28 December 2017, date last accessed).

Journal of Cybersecurity, 2018, Vol. 0, No. 0 11

Downloaded from https://academic.oup.com/cybersecurity/advance-article-abstract/doi/10.1093/cybsec/tyy003/5066370
by guest
on 04 August 2018

http://www.bitcoincharts.com/markets/
http://www.coindesk.com/bitstamp-claims-roughly-19000-btc-lost-hot-wallet-hack/
http://www.coindesk.com/bitstamp-claims-roughly-19000-btc-lost-hot-wallet-hack/
https://www.coinbase.com/vault
https://www.coinbase.com/vault
http://securelist.com/analysis/ kaspersky-security-bulletin/59414/financial-cyber-threats-in-2013-part-2-malware/
http://securelist.com/analysis/ kaspersky-security-bulletin/59414/financial-cyber-threats-in-2013-part-2-malware/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064525/KSN_Financial_Threats_Report_2014_eng.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064525/KSN_Financial_Threats_Report_2014_eng.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064525/KSN_Financial_Threats_Report_2014_eng.pdf
http://www.coindesk.com/report-bitcoin-targeted-22-financial-malware-attacks/
http://www.coindesk.com/report-bitcoin-targeted-22-financial-malware-attacks/
http://www.theverge.com/2014/2/7/5386222/a-string-of-thefts-hit-coinbase-bitcoins-most-reputable-wallet-service
http://www.theverge.com/2014/2/7/5386222/a-string-of-thefts-hit-coinbase-bitcoins-most-reputable-wallet-service
https://bitcointalk.org/index.php? topic=576337
https://bitcointalk.org/index.php? topic=576337
https://bitcointalk.org/index.php? topic=576337


9. Eskandari S, Barrera D, Stobert E et al., 2015. A First Look at the

Usability of Bitcoin Key Management. In: NDSS Workshop on Usable

Security. San Diego: Internet Society, 2015.

10. Bitcoin Wiki, 2016. Cold Storage. https://en.bitcoin.it/wiki/Cold_storage.

11. Coinbase, 2016. Secure Bitcoin Storage - Coinbase. https://www.coin

base.com/security (28 December 2017, date last accessed).

12. Bitfinex, 2016. Bitfinex - Our Security Practices. https://www.bitfinex.

com/pages/security (28 December 2017, date last accessed).

13. Moore T, Christin N. Beware the middleman: empirical analysis of

bitcoin-exchange risk. In: Proceedings of the 17th International

Conference on Financial Cryptography and Data Security, pp. 25–33.

Okinawa, Japan: Springer, 2013.

14. Meiklejohn S, Pomarole M, Jordan G, et al. A fistful of bitcoins: character-

izing payments among men with no names. In: Proceedings of the 2013

Conference on Internet Measurement, pp. 127–40. Barcelona, Spain:

ACM, 2013.

15. Cont R. High frequency dynamics of limit order markets. In: 3rd

Imperial-ETH Workshop in Mathematical Finance, London, UK: CFM-

Imperial Institute of Quantitative Finance, 2015.

16. Cont R, Stoikov S, Talreja R. A stochastic model for order book dynamics.

In: Operations Research, pp. 549–63. INFORMS, 2010.

17. Bacry E, Dayri K, Muzy JF. Non-parametric kernel estimation for sym-

metric Hawkes processes. Application to high frequency financial data. In:

The European Physical Journal B, Berlin, Heidelberg: Springer, 2012.

18. Engle R, Russell J. Forecasting the frequency of changes in quoted foreign

exchange prices with the autoregressive conditional duration model. In:

Journal of Empirical Finance, pp. 187–212. Elsevier, 1997.

19. Heusser J, 2013. Bitcoin Trade Arrival as Self-Exciting Process. http://

jheusser.github.io/2013/09/08/hawkes.html (28 December 2017, date last

accessed).

20. Krishna R, 2015. Bitcoin Trade Arrival Modeling. http://radhakrishna.

typepad.com/bitcoin-trade-arrival-process.pdf (28 December 2017, date

last accessed).

21. Rosenfeld M, 2012. What are Multi-signature Transactions? http://bitcoin.

stackexchange.com/questions/3718/what-are-multi-signature-transactions

(28 December 2017, date last accessed).

22. Goldfeder S, 2014. New Research: Better Wallet Security for Bitcoin,

Freedom To Tinker. https://freedom-to-tinker.com/blog/stevenag/new-re

search-better-wallet-security-for-bitcoin/ (28 December 2017, date last

accessed).

23. Shamir A. How to share a secret. Communications of the ACM 1979; 22:

612–13.

24. MacKenzie P, Reiter MK. Two-party generation of dsa signatures. In:

Advances in Cryptology-CRYPTO 2001, pp. 137–54. Santa Barbara, CA:

Springer, 2001.

25. Gennaro R, Jarecki S, Krawczyk H et al. Robust threshold dss signatures.

In: Advances in Cryptology-EUROCRYPT’96, pp. 354–71. Saragossa,

Spain: Springer, 1996.

26. Gennaro R, Goldfeder S, Narayanan A. Threshold-optimal DSA/ECDSA

signatures and an application to Bitcoin wallet security. In: Applied

Cryptography and Network Security. Guildford, UK: Springer, 2016.

27. Antonopoulos AM, 2015. Wallets. In Mastering Bitcoin, Oasterin

Ebooks. https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch05.

asciidoc (28 December 2017, date last accessed).

28. Narayanan A, Bonneau J, Felten E et al. Chapter 4: How to store and use

bitcoins. In: Bitcoin and Cryptocurrency Technologies. Princeton, NJ:

Princeton University Press, 2015.

29. Skellam JG. The frequency distribution of the difference between two pois-

son variates belonging to different populations. J R Stat Soc 1946;109:296.

30. Skellam distribution, 2013. https://upload.wikimedia.org/wikipedia/com

mons/thumb/b/b2/SkellamDistribution.png/440px-SkellamDistribution.

png (28 December 2017, date last accessed).

31. Ofcorti O, 2014. Daily and weekly bitcoin transaction cycles. http://

organofcorti.blogspot.com/2014/11/daily-and-weekly-bitcoin-transac

tion.html (28 December 2017, date last accessed).

12 Journal of Cybersecurity, 2018, Vol. 0, No. 0

Downloaded from https://academic.oup.com/cybersecurity/advance-article-abstract/doi/10.1093/cybsec/tyy003/5066370
by guest
on 04 August 2018

https://en.bitcoin.it/wiki/Cold_storage
https://www.coinbase.com/security
https://www.coinbase.com/security
https://www.bitfinex.com/pages/security
https://www.bitfinex.com/pages/security
http://jheusser.github.io/2013/09/08/hawkes.html
http://jheusser.github.io/2013/09/08/hawkes.html
http://radhakrishna.typepad.com/bitcoin-trade-arrival-process.pdf
http://radhakrishna.typepad.com/bitcoin-trade-arrival-process.pdf
http://bitcoin.stackexchange.com/questions/3718/what-are-multi-signature-transactions
http://bitcoin.stackexchange.com/questions/3718/what-are-multi-signature-transactions
https://freedom-to-tinker.com/blog/stevenag/new-research-better-wallet-security-for-bitcoin/
https://freedom-to-tinker.com/blog/stevenag/new-research-better-wallet-security-for-bitcoin/
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch05.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch05.asciidoc
https://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/SkellamDistribution.png/440px-SkellamDistribution.png
https://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/SkellamDistribution.png/440px-SkellamDistribution.png
https://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/SkellamDistribution.png/440px-SkellamDistribution.png
http://organofcorti.blogspot.com/2014/11/daily-and-weekly-bitcoin-transaction.html
http://organofcorti.blogspot.com/2014/11/daily-and-weekly-bitcoin-transaction.html
http://organofcorti.blogspot.com/2014/11/daily-and-weekly-bitcoin-transaction.html

