
Monetization on the Modern Web:
Automated Micropayments From Bitcoin-Enabled Browsers

Samvit Jain
Department of Computer Science, Princeton University

Abstract
In this paper, we propose and evaluate a software im-

plementation of a Bitcoin micropayments-based revenue
system for online businesses, which enables users to make
small payments to access web content on a per-use basis, in
lieu of viewing ads or signing up for a credit card subscrip-
tion. We focus in particular on resolving a known issue
with past conceptions of micropayment systems, namely
that asking users to repeatedly make payment decisions
about online content they have not yet experienced im-
poses a cognitive load, deterring usage. Our solution takes
the form of a client-side browser extension, which handles
the logistics of making payments, via the use of special
HTTP header fields and integration with a client’s Bitcoin
wallet, but also automates the decision process, by taking
appropriate action based on a user’s previously indicated
preferences. Our system succeeds in eliminating any extra,
payment-related actions from the process of browsing the
web, a significant step toward removing the mental transac-
tions costs associated with micropayments. We conclude
by evaluating our software on the basis of various other cri-
teria, such as ease of installation, security, and scalability,
to illustrate avenues for future work in the area.

1 Introduction
Loading a 2000-word CNN article on a mobile phone

involves over 200 HTTP requests to 25 different domains,
uses around 2MB of mobile data, and takes 13 seconds on
an average 4G LTE network [1]. This is the state of the art
in online monetization, the giveaway signs of a massive
consortium of ad scripts and tracking devices aiming to
convert a user’s web activity into actionable insights.

The numbers belie the shortcomings. Advertising infras-
tructure forms the bottleneck in web page performance,
adding between 4 and 12 seconds to the load times of 25
top news sites in the U.S [2]. Advertising as a business
model necessitates third-party tracking, and the aggrega-
tion of consumer data across disparate sources [3]. Ads
themselves clutter websites and compete with the primary
content of a page for a user’s attention [4]. Given these
issues, it is unsurprising that advertising is under attack –
from digital rights initiatives such as Do Not Track, from
companies building new products to help users evade ads,
and from the proliferation of content blockers on desktop
and mobile devices.

The other leading form of content monetization on the
web, the subscription model, suffers from its own host of
issues. To sign up for a subscription requires a user to
provide a credit card number and a billing address, two
fairly sensitive pieces of personal information. Moreover,
the process of subscribing itself entails a fixed time cost,
making the idea of holding many subscriptions, even if
they were financially inexpensive, infeasible [5]. The final
nail in the coffin in the psychology of paywalls. Paywalls
stem impulse usage, conditioned as users are to avoiding
them, and turn away infrequent visitors, who might have
been customers under a more flexible pricing scheme [6].

1.1 Micropayments

Micropayments, the concept of making payments to a
website on a per-use basis, offer a promising alternative
to traditional content monetization schemes. By asking
users to pay for access to an online service, but in a non-
contractual way, the micropayments model combines the
service quality expectations associated with subscriptions

mailto:samvit_jain@berkeley.edu


with the accessibility of free content. The fact that users,
not advertisers, are now the customers obviates some of the
privacy and performance issues discussed earlier. Unlike
with advertising, little additional infrastructure, beyond
that used to collect usage data for analytics purposes, is
needed to track and bill a visitor for usage. Bitcoin-based
micropayments, moreover, enable users to pay for content
without providing highly sensitive information, or entering
into long-standing contracts. The result is a flexible, gran-
ular revenue model that incentivizes high-quality content
and attention to in-site experience.

Previous conceptions of micropayments, however, have
suffered from a problem known as cognitive load [7]. The
assumed implementation generally involves a "click to
pay" model, in which a users clicks on a button to pay a
site a fixed fee as a prerequisite to access [8]. This design
forces users to place a value on a good they have not yet
experienced, and take an explicit, separate action to pay
for it. The mental transaction costs associated with these
decisions arguably do not fall linearly with the price of the
good; namely, purchasing an online service worth $0.10
does not take just one-tenth of the mental effort involved
in purchasing one worth $1.00 [9]. This cognitive load
adds up over the course of a browsing session, deterring
usage and resulting in less purchased value than under a
flat-fee, or bundled, pricing model [10, 11]. Micropay-
ments have thus been dismissed by many technologists as
a fundamentally flawed proposition, the alleged problem
being psychological and economic in nature, not a matter
of poor implementation [10].

1.2 Contributions
In this paper, we argue that a technical implementation

that deliberately abstracts away small decisions, combined
with a correctly designed permission model, can in fact
alleviate the problem of cognitive load. Our proposed so-
lution, an automated system for funding a user’s Internet
activity, invokes the use of HTTP headers to communicate
billing schemes and proofs-of-payment, and a front-loaded
permissions model, to allow a client-side browser exten-
sion to make payment decisions on behalf of a user.

Together, these components ensure that users do not
have to take discrete actions on each page view. Given the
permission to spend at any rate below a threshold indicated
on install, the extension can determine whether a billing

scheme is consistent with a user’s willingness to pay, and
take action accordingly. Furthermore, the use of HTTP
headers to transmit payment instructions and proofs-of-
payment enables the request-response logic for payments
to be built into the Javascript of a webpage itself. This
frees the client from the responsibility of initiating and
maintaining a separate connection with the server to make
payments. Finally, by allowing a user to start or stop a pay-
ment stream by simply opening or closing a browser tab,
respectively, we tie our implementation of micropayments
to natural actions a user makes while browsing the web.

2 Background

2.1 Bitcoin
We begin by motivating our decision to use Bitcoin in

our implementation of micropayments. The key observa-
tion is that traditional payment mechanisms degrade poorly
in the limit of small transaction values, due to the high fixed
costs associated with enabling trustless transactions on the
web. Current approaches to online payments involve ei-
ther hypersensitivity to fraud, with a trusted third-party
blocking all transactions that look remotely suspicious (the
PayPal model) [12], or make the assumption that the ex-
pected reputation damage to a vendor that attempts to cheat
a client will exceed the gains from strategic default (the
credit card model). The PayPal model entails obvious dead-
weight losses, from foregone legitimate transactions, and
requires a central authority to mitigate every transaction.
The credit card model involves revealing the equivalent
of a private key to an unknown entity on the web to make
payments of any value, an alarming concept to anyone
familiar with public-key cryptography. In particular, when
the payment values are small, fraud mitigation costs begin
to dominate, and the reputation risk assumption breaks
down.1 Indeed, fixed costs are part of the reason why Pay-
Pal charges sellers a minimum fee of $0.30, over the 2.9%
cut they take on each transaction [13].

Standard Bitcoin transactions in fact also entail pro-
hibitive transaction fees. To ensure that a Bitcoin transac-
tion is incorporated in the blockchain, the global ledger
that establishes the legitimacy of Bitcoin payments, the

1Far fewer websites have the reputation to credibly ask users for
credit card numbers than have the ability to charge for web content.

2



issuer of the transaction must include an incentive, in the
form of a transaction fee, for Bitcoin miners, the entities
responsible for updating the blockchain. These fees vary
depending on the output values of the transactions (which
roughly signal how "important" a transaction is) and the
size in bytes of the transaction [14]. As of April 2016, to
ensure that a transaction is incorporated in the blockchain
relatively quickly entails a transaction fee of 40 Satoshis
per byte, or 9,040 Satoshis ($0.04) for the median transac-
tion size of 226 bytes [15].

2.2 Micropayment Channels
The workaround, and the prerequisite for any cost-

effective implementation of Bitcoin micropayments, is
a client-server contract known as micropayment channels.
The channels protocol allows a client to make a series of
payments to a server of very fine granularity (i.e. down
to 1 Satoshi, or .0004 cents), while only publishing and
paying transaction fees on the first and last transactions
[16]. Using this protocol, the server can provide a client
access to a resource, such as a multi-page news article or a
content feed, in an incremental way, and accept metered
payments for doing so.

The mechanics of the protocol are as follows [17, 18].
The client first creates (but does not publish) a transaction
transferring the maximum anticipated total value to be
payed on the channel to an "escrow" account owned by
both the client and the server. Spending Bitcoin associated
with this account requires the signatures of both parties.2

The client then creates a second, refund transaction, which
takes as input the escrow transaction and refunds the entire
value to the client, and obtains the server’s signature on
it. This transaction is locked with a feature known as
nLockTime, which ensures that the transaction cannot be
accepted into the blockchain until a specified time window
has expired. This value is set to the expected duration
of the client-server relationship (a common value is one
day), and allows a client to reclaim its invested Bitcoin if
the server proves unresponsive or uncooperative. Finally,

2Standard Bitcoin addresses are owned by only a single party. Es-
crow accounts, also known as multisig addresses, allow joint ownership,
where the collusion of m-of-n parties is required to spend the associated
Bitcoin. In this case, we utilize a 2-of-2 address to stipulate that both
the client and server have to sign to transfer the deposited Bitcoin to an
address owned solely by one of them.

the client broadcasts the escrow transaction, signalling
to the server that it is ready to start making payments
for a service. As the server provides incremental access
to a resource, the client issues a series of transactions
transferring more and more of the Bitcoin in the escrow
account to the server, and less and less (i.e. the remainder)
to itself. These transactions bear the client’s signature,
but are not published; at any given point, the server could
also sign one of these transactions, and claim the enclosed
payment. When the client and server wish to conclude the
relationship, the server simply signs and broadcasts the
last transaction, which pays for the total amount of service
provided. Note that this must be done before the refund
transaction unlocks, or the client can empty the escrow
account.

The only two transactions that are published in the chan-
nels protocol are the escrow transaction and the final pay-
ment transaction. Nevertheless, the protocol enables a
client to pay a vendor for a continuous service, at as fine a
level of granularity as desired, without any trust assump-
tions. The maximum amount that either the client or the
server can abscond is the value of the last unit of service,
which can be calibrated as desired [16]. This is a signifi-
cant improvement over the risk involved in handing over a
credit card number to an unknown party on the Internet.

2.3 The 21 Bitcoin Library
Our implementation of Bitcoin micropayments is built

on a software library developed by the Andreessen
Horowitz-backed Bitcoin startup 21. This library, which is
coupled with a personal Bitcoin mining device and Linux
machine called the 21 Bitcoin Computer, enables develop-
ers to write simple client and server applications that make
and accept payments in Bitcoin. Among the packages in-
cluded in the library are modules for buying and selling
digital goods on a private marketplace, searching for and
publishing payable endpoints (i.e. web services that accept
Bitcoin), and making three types of Bitcoin transactions.
These include standard Bitcoin transactions, which are
published on the blockchain; off-blockchain transactions,
which involve transferring Bitcoin addresses over the 21
network; and micropayment channels [19].

Two of the four software components involved in our
prototype are Python web servers implemented with the
21 Bitcoin Library. These include a client-side module

3



that makes payments from a user’s Bitcoin wallet, and a
public web server that accepts payments from clients, in
exchange for granting access to its "payable" endpoints.

While we run our servers on the 21 Bitcoin Computer, a
device that produces a small, steady stream of Bitcoin for
programmatic use, any Linux machine with the 21 Bitcoin
Library installed would suffice. The 21 Bitcoin Library
itself is not a hard dependency; while it provides conve-
nient abstractions, our software could be built with any
software package that offers a Bitcoin wallet-integrated
API for issuing and accepting Bitcoin transactions.

The 21 Bitcoin Library is open-sourced on GitHub. [20]

3 Related Work
Our project fits into the context of four existing services

that each exhibit a particular desired property of a
successful micropayments-based revenue system:

Streamium. Streamium is a service that allows users to
stream live video to an audience in exchange for time-rated
Bitcoin payments. The platform allows direct monetiza-
tion of online courses, private lessons, gaming events and
showcases, podcasts, and movies, without third-party in-
volvement (e.g. ad networks), prior setup, or subscription
contracts [21]. Streamium demonstrates an attractive use
case for micropayments, namely, drawing metered pay-
ments for fluid, divisible services (e.g. live video), an idea
that motivates our focus on usage-based billing schemes.

Blendle. Blendle is an ad-free portal to online journal-
ism that was launched in the Netherlands and Germany in
2015, where it has amassed 650,000 users [22]. The ser-
vice allows users to pay for content on a per-article basis,
and offers users the option to refund their payment if the
article does not meet their expectations. The platform cites
a surprisingly low refund rate of 10%, and backing from
prominent publishers, including the New York Times [22].
The budding success of Blendle signals the viability of
unbundled content distribution [23], a key assumption un-
derlying work on micropayments, and offers a roadmap for
achieving widespread server-side (i.e. publisher) adoption.

Brave. Brave is a new web browser that replaces intru-
sive advertising and tracking devices with so-called "clean
ads". The company itself is led by a co-founder and past
CEO of Mozilla, Brandon Eich. The salient idea from

Brave that we apply to our work on micropayments is the
concept of opt-in advertising; in particular, the notion that
since website code ultimately runs in the user’s browser
(and can be modified, blocked, etc.), users are entitled to
choose the monetization scheme they wish to support [24].
This is reflected in the design of our prototype web service,
which offers two versions of the same content – a free,
ad-supported version and a payable, ad-free version.

ChangeTip. ChangeTip is a social tipping platform
that enables visitors to tip writers, artists, and businesses
through websites such as Twitter, YouTube, Reddit, and
Facebook. To accept tips, content producers must simply
publish a Bitcoin address on one or more of these outlets.
ChangeTip serves as the intermediary party, allowing users
to direct funds deposited to their ChangeTip accounts to
the published addresses through public mentions [25].
ChangeTip’s contribution to the micropayments space
is its emphasis on accessibility, in that it enables even
freelance publishers to directly accept money for their
work from anyone on the Internet.

Taken together, these services offer a promising set of
ideas on which to base a commercial implementation of
client-server micropayments. However, we identified two
key components that we found lacking in the existing body
of work: namely, a fluid system of funding (users still have
to pull out credit cards, or buy Bitcoin, to finance their web
activity) and transactional automation (explicit action is
required from the user to initiate a payment). While the
use of personal mining devices, as in our prototype, may
offer a solution to the first problem, in this work we focus
primarily on the second issue – proposing an automated
infrastructure for the payable Internet.

4 Approach
Before building our system, we identified a set of desired

properties that a successful prototype should demonstrate.
While we focused on resolving the cognitive load problem,
we also gave critical consideration to other features that
a deployable and usable system must posses, recognizing
that these properties might lie in opposition. For example,
a relentless focus on automation might result in an onerous
or misleading permissions model, deterring adoption.

We will use our identified criteria to assess our imple-

4

https://github.com/21dotco/two1-python


mentation in Section 7 of this paper. Organized roughly
by complexity and relevance to a research prototype:

Fundamentals

Measurability. Can a web service accurately track
and bill a client for usage?
Granularity. Can it be guaranteed that the client
need never pay for more than the next unit of service,
and the server need never provide service beyond the
next unit of payment, for as small a unit as desired,
while keeping transaction costs low?

Distribution

Ease of installation. How many different software
components have to be installed by the client? How
much user configuration is required?
Modularity. Is it possible to encapsulate all
payments-related functionality in a library that web
services can import into their server-side codebase?

Deployment

Security. Is the client-server channel secured to man-
in-the-middle attacks? Can any sensitive data in-
volved be protected in all cases?
Scalability. Can a web service charge, accept, and se-
curely manage payments from large number of clients
simultaneously?
Error handling/recovery. Can the client and server
detect and recover from a broken channel connection,
or a collapse of the other node, without losing critical
state information?

5 Architecture

5.1 Components
Our proposed architecture consists of four key compo-

nents:

Webpage – a page or resource monetized via a Bit-
coin payment requirement
Server – the backend process which handles billing
and payments for the monetized service; this could
ostensibly be the same server that generates the site’s
content, but need not be
Client payment module – a software module with

access to a client’s Bitcoin wallet that makes pay-
ments and generates proof-of-payment header fields
on request; in our prototype, this is a private web
server that runs on the client’s 21 Bitcoin Computer
Client browser extension – an application installed
by the user that funds her usage of payable web ser-
vices, by retrieving payment header fields from the
generator and appending them to outgoing requests

We implemented the monetized webpage as a static,
one-page Node.js web application hosted on Heroku. The
page is supported by Google AdSense advertising, which
is removed if the page receives a 200 O.K. response from
its payments server.

We implemented the payments server using Python and
Flask. The server uses the 21 Bitcoin Library to participate
in the HTTP 402 Protocol with the client, and manage
received payments.

We implemented the client payment module as a private
web server, also using Python/Flask. The generator makes
use of the 21 Bitcoin Library to issue Bitcoin transactions
to the server, and generate payment header fields.

We implemented the client browser integration as a
Chrome extension in Javascript. This is the core piece
of software built for this study. The extension, which is
a fork of an existing Chrome extension, Requestly, uses
the chrome.webRequest API to read the HTTP headers of
server responses, and append HTTP headers to a user’s
web requests, thereby allowing it to access payable web
services.

Finally, we implemented a minor modification to the 21
Bitcoin Library to support billing schemes and metered
payments.

The source code for our implementation is available on
GitHub at https://github.com/SamvitJ/Bitcoin-
micropayments.

5.2 HTTP 402 Protocol

Our implementation of micropayments builds on a core
HTTP request-response protocol set forth in the 21 Bitcoin
Library [19]. The protocol allows a client to demonstrate
interest in a payable web service, receive payment instruc-
tions from the server, retry the request with the appropri-
ate proof-of-payment header fields, and if the request is

5

https://github.com/SamvitJ/Bitcoin-micropayments
https://github.com/SamvitJ/Bitcoin-micropayments


deemed valid, gain access to the service. These four steps
are outlined in Fig. 1.

Figure 1: HTTP 402 Client-Server Protocol [19]

The HTTP code 402 corresponds to a status of "Payment
Required", and is used by the server to indicate that a
particular web service is associated with a fee. Alongside
its 402 Payment Required response (Step 2 in Fig. 1),
the server sends a set of instructional header fields, which
specify the price of the endpoint and the Bitcoin address
to which payments should be made (see Fig. 2).

After receiving the server’s response, the client issues
the actual Bitcoin transaction that pays for its usage. The
client must also provide an assertion (i.e. a signature) that
links its request for the service to the transaction that it
issued. This transaction itself will eventually be broadcast
in the blockchain, and can be verified by the server.

This is accomplished by the second GET request (Step
3 in Fig. 1), in which the client sends a set of two proof-of-
payment header fields – a serialized dictionary containing
various metadata related to the Bitcoin transaction, such
as the client’s Bitcoin address and a timestamp, and an
authorization field, which consists of the client’s digital
signature on the first header (Fig. 2). Using the client’s
public key, the server can verify that the same entity which
issued the transaction is requesting for and receiving the
corresponding service.

If the payment header fields are successfully validated,
the server responds with the requested resource (e.g. an
ad-free webpage) and an HTTP status code of 200 OK.
This completes the initial request-response cycle.

The key innovation of the 402 Protocol is that it allows

Figure 2: HTTP 402 Protocol Headers

any entity on the Internet to programatically pay for us-
age of an online service – without having to enter into a
long-standing contract (e.g. via a credit-card subscription),
or defer to a third party to arbitrate (e.g. PayPal). In this
study, we build the necessary browser integration that ap-
plies the 402 protocol to the problem of funding a user’s
everyday Internet activity, by listening to and modifying
web requests, and interfacing with the user’s Bitcoin wal-
let. We also extend the 402 Protocol to support continuous,
metered payments, which we now discuss in Section 5.3.

5.3 Metered Payments
The basic HTTP 402 Protocol that we have described

so far allows a user to visit a monetized webpage, pay
the service’s entrance fee, and gain initial access to the
resource. Many websites, however, may expect a user to
make metered payments for continued usage of a service.
For example, a game might charge 10 cents to begin play,
and 5 cents for every subsequent minute of usage, to be
paid every 10 seconds. Metered billing schemes such as
this one correspond well with services that involve continu-
ous delivery of dynamic web content – such as games, sites
with dynamic content feeds (Facebook, Twitter), and audio
and video streaming services (Spotify, YouTube, Netflix).

Note that by allowing a service to specify merely two
figures – an initial fee and a subsequent billing rate, we
can support any linear billing scheme, from an entirely
front-loaded model, such as one a stock photo provider or
short-form news outlet might adopt, to a purely metered

6



one. If a service also wishes to stipulate the frequency
of payment (as opposed to accepting a standard value), a
third field indicating the time window to which a billing
rate corresponds is also required.

To implement support for metered payments, we
amended the HTTP 402 Protocol in two ways. Firstly,
we added additional instructional header fields to specify
a billing rate, an expiration date for the scheme, and a
scheme identification number. Secondly, we introduced a
subsequent series of HTTP requests, to follow the initial
request-response cycle, to allow a client to periodically
send proofs-of-payment for continued usage of the ser-
vice. Including the billing scheme in the server’s initial
402 Payment Required response enables the client to con-
tinue paying for the service, for as long as the scheme
is valid, without any further instructions from the server.
This arrangement has clear conceptual and practical advan-
tages over one that requires the server to send instructional
header fields for every payment a client makes.

5.4 Permissions Model
A key component of a successful automated micropay-

ments system involves presenting a user with a reasonable
view of their payment activity, balancing the stated goal
of averting information overload with the desired prop-
erties of transparency and sensitivity to user preferences.
Coupled with this issue are the trade-offs involved in de-
veloping a viable permissions model. On the one hand,
one could envision a simple but inflexible system which
demands up-front authorization (i.e. on install) for all ac-
tions. Alternatively, one could conceive of a complex but
expressive design, which requests permissions as the need
for them arises, but risks alienating the user by deluging
him or her with small decisions.

Our proposed solution is motivated by the observation
that prompting a user to indicate a set of preferences on
install is a common practice, and will presumably be tolera-
ble, especially since the extension will be spending money
on behalf of the user, but incremental configuration, where
every new situation triggers a dialog box and demands
user action, is less likely to be acceptable. Consequently,
a well-designed permissions model should anticipate the
broad categories of decisions that will arise, and accept
from the user the relevant parameters on install. For in-
stance, the browser extension could inform the user about

common pricing schemes for popular payable services in
various categories (e.g. news, social media, games, blogs),
and then allow the user to indicate thresholds on their
willingness to pay for each class of web content (e.g. at
most 30 cents for a long-form journalistic piece; at most 5
cents per minute for a video). On use, the extension would
check if the billing scheme for a particular website is con-
sistent with the user’s price point for that content type; if
not, the extension would simply refrain from adding pay-
ment header fields to requests made by that site.3 The user
would then either be locked out of the resource or face an
alternate monetization scheme (e.g. ads). Additionally,
the extension could provide a preferences menu for later
customization, allowing a user to calibrate their payment
threshold for a particular category of web services, or spec-
ify finer-grained rules (e.g. pay up to 40 cents for Vox
pieces, but at most 25 cents for all other news articles).
Relegating special configuration to a menu ensures that
everyday usage of the extension is free from interruption.
The underlying assumption is that unless the user takes
willful action, existing preferences apply.

6 Implementation

6.1 Client-Side Setup
To integrate the 402 Protocol with a user’s desktop web

activity, we designed and built two software modules – a
Chrome browser extension, to be installed on all devices
from which the user wishes to make micropayments, and
a headers generator, a software module that runs on the
machine holding the user’s Bitcoin wallet. As indicated
earlier, while it is the extension’s responsibility to listen for
and respond to 402 Payment Required responses from web
services, it is the generator that issues Bitcoin transactions
to pay for units of service and creates the proof-of-payment
header fields that the browser uses as tokens to claim the
service (see Fig. 3).

In our implementation, we assumed that the device host-
ing the extension is not the same as the device running
the generator, allowing our design to be generalized to
a setup in which a user owns and uses multiple devices

3Note that this requires the browser extension be able to classify
websites as belonging to a particular content type. Ostensibly, this infor-
mation could be provided in yet another instructional header field.

7



to browse the payable web (e.g. a personal computer, a
tablet, a mobile phone), any one of which (or a separate
device entirely) manages the user’s Bitcoin and is capable
of issuing Bitcoin transactions.

6.1.1 Browser Extension

To build our browser integration, we began by forking a
popular Chrome extension, Requestly, that enables users
to interact with their network activity, by creating rules to,
among other things, modify the headers of HTTP requests
to certain domains.

We replaced the web interface for creating static rules
in Requestly with our own event-based functionality, re-
taining the underlying logic for reading the header fields
of incoming HTTP responses, and adding header fields to
outgoing HTTP requests. Both the original extension and
our spin-off make heavy use of the chrome.webRequest
API, which opens up a user’s network activity to tampering
at various points in the "life cycle" of a web request [26].
In particular, we subscribe to two key chrome.webRequest
events – onHeadersReceived and onBeforeSendHeaders
(see Fig. 4).

In our listener for the onHeadersReceived event, we
check for the presence of the instructional header fields
associated with a 402 Payment Required response (Fig.
2). If present, we store the fields in a global dictio-
nary (Javascript object), which maps the base URL4 of
the response origin to a nested dictionary holding the in-
structional header fields themselves, as name-value pairs
(e.g. "Price": 100, "Bitcoin-Payment-Channel-Server":
"http://merchant-server.com/payment"). We also condi-
tionally initialize an entry in a second global dictionary,
which maps payable URLs to proof-of-payment header
fields for the associated service.

These two global dictionaries which store instructional
and payment header fields, respectively, constitute the core
data structures used by our browser extension to maintain
payment state. Our use of dictionaries keyed by URL
allows us to support concurrent payment connections to
multiple payable web services. This capability is needed,
for instance, whenever a user is accessing more than one
monetized domain across separate browser tabs.

4We use the term base URL to refer to a URL stripped of
relative paths, e.g. http://www.micropayments.tech/, as opposed to
http://www.micropayments.tech/js/cookies.js.

After receiving a 402 Payment Required response from a
domain, and updating the global dictionaries, as described
above, we send off an AJAX POST request to our client
payment module (Step 3 in Figure 3). The body of the re-
quest contains the instructional header fields received from
the payable server; the response, captured in the success
callback of the AJAX query, contains the requested proof-
of-payment header fields.5 We add the received fields, also
packaged as a dictionary of name-value pairs, to the end
of the header fields array for the corresponding URL.

In our listener for the second event to which we sub-
scribe, onBeforeSendHeaders, we add payment header
fields to outgoing HTTP requests, if they are to URLs con-
tained in our global dictionaries. This constitutes Step 6 in
Figure 3, and concludes our extension’s interaction with
the web request-response cycle. After using a set of header
fields, we delete them from the global payment header
fields dictionary, as each set corresponds to a unique Bit-
coin payment transaction.

Note that in our proposed architecture, the browser ex-
tension plays merely an enabling role, fetching for the
user the proof-of-payment needed to gain access to gated
Internet endpoints. The extension’s sole responsibility is
to add metadata to pre-scheduled web requests made by
the monetized webpage to its backend server, activity that
would occur even if the extension was not present. This
separation of labor between user and vendor code enables
the browser extension to pay for any kind of monetized
resource (e.g. a news article, a blog, a game), given that
the service implements the 402 Protocol, without special
configuration or user action.

6.1.2 Client Payment Module

Our conception of the client payment module is com-
prised of a small web application built on the 21 Bitcoin Li-
brary, which responds to POST requests from the browser
extension by returning a set of proof-of-payment header
fields. While we use the 21 Bitcoin Library, any soft-
ware package that allows programmatic invocation of a
Linux-based Bitcoin wallet (e.g. a SQLite file holding
private keys) would suffice. By programmatic invocation,
we mean that the package must provide an API to issue
Bitcoin transactions signed with a private key stored in the

5The role of the client payment module is discussed in more detail
in Section 6.1.2.

8



Figure 3: HTTP 402 Protocol Software Setup

wallet. Note that to support the micropayment channels
protocol, the library must also provide methods for opening
and closing a channel, and be able to store channel-related
state (e.g. the unpublished refund transaction).

6.2 Metered Payments

To support metered payments, we implemented a natural
extension to the HTTP request-response flow detailed in
Fig. 3. Instead of making a single payment via the payment
module, and providing proof-of-payment in a single follow-
up request to the server (Step 7), in the metered case, the
client makes a periodic series of HTTP requests to the
server, each of which contains proof-of-payment for the
next unit of service to be provided by the server (in its
HTTP response). Each request is preceded by a POST
query to the client payment module (Step 3), which triggers
a Bitcoin payment for the requested resource unit.

To cease usage of a time-rated service, a user simply
closes the corresponding browser tab. Since payments are
made only as long as the extension continues to query the
headers generator, closing the webpage terminates pay-
ment activity as well. This is a neat consequence of our
decision to make payments via HTTP headers on the same
TCP connection over which the user accesses a resource.
In our prototype, we also pause payments if the user tem-
porarily switches out of a browser tab but does not close it,
by stipulating that a GET request only be made by the web-

page if the tab is currently active. While a desirable feature,
note that this requires consensus between the merchant and
the client on what constitutes "usage" of a resource.

6.3 Security
Running the client payment module as a private web

server entails various security risks. In particular, if a
malicious party intercepts or obtains a set of payment
header fields, it can claim a unit of service that was actually
paid for by the owner of the generator. Why is this so?
Recall that the payment header fields serve as a proof-of-
payment, linking an HTTP request for a resource to the
Bitcoin transaction that paid for it (see Section 5.2). Once
the transaction is made, the first party to use the associated
header fields can claim the service. This attack is possible
because our conception of micropayments involves no user
authentication, so a server cannot link a client Bitcoin
address to a particular TCP connection. Introducing user
authentication would defeat some of the reasons for using
Bitcoin micropayments in the first place,6 so we must look
elsewhere for a solution.

Luckily, this attack can be resolved with a relatively
straightforward application of standard encryption prac-
tices. Firstly, communication between the client’s browser

6One of the major advantages of using Bitcoin micropayments over
a subscription model is that it eliminates the time cost of going through a
signup and login process for every site.

9



Figure 4: Chrome Web Request Life Cycle [26]

and headers generator must occur over HTTPS. This is
to ensure that payment header fields are not transmitted
in cleartext, which requires generating a self-signed TLS
certificate on the device running the headers generator, and
installing this certificate on the client’s desktop computer.7

This ensures that the client’s browser will accept the gener-
ator’s self-signed certificate, when the browser extension
makes an AJAX POST request for payment header fields.
Secondly, the client’s browser must authenticate itself with
the headers generator, so that the generator can verify that
it is only sending payment header fields to its owner. Do-
ing so involves exactly the opposite process. Now the user
must generate a self-signed certificate on their desktop
computer for their browser, and install it on the device
hosting the generator. This second measure enables the
less common practice of client authentication, needed in
our case to ensure that only the user’s own browser can
retrieve headers from the user’s generator.

Finally, another attack vector is the channel of commu-
nication between the user’s browser and the payable web
server. To avoid misuse of payment header fields on this

7Scripts for creating a self-signed certificate are included in the
headers generator repository. We also made available our script for
importing and installing the certificate on OS X.

channel, the client must ensure that the server is using
up-to-date cryptography and owns a valid certificate issued
by a reputable certificate authority.

7 Evaluation

7.1 Automation

To evaluate the degree to which our system automates
the process of paying for content on the web, we begin by
enumerating the set of tasks that our software performs for
the user, and the set of actions, both implicit and explicit,
that the user must take even with our software.

Our described system effectively handles three classes
of problems – the mechanics of making payments, making
purchase decisions based on previously indicated prefer-
ences, and anomaly detection and handling. In terms of me-
chanics, the extension can inform a site that a user wishes
to pay for access, pay the initial entrance fee, pay the me-
tered charges in a timely, consistent way, and cease making
payments when a user leaves the site. The extension can
also made binary decisions based on a broad view of user
preferences. Specifically, the extension can read a site’s
billing scheme and decide whether or not to pay for the
service (i.e. add payment header fields) based on a user’s
payment threshold for that content type. Of course, a user
can override this decision by changing their preferences,
turning off the extension, or exiting the webpage. Finally,
the extension can perform basic validation of site behavior,
and take action appropriately. Namely, it can check that
a site’s payment-related web activity (e.g. frequency of
GET requests) matches up to its claimed billing scheme.
If it does not match, the extension can simply refuse to pay
and alert the user. In our prototype, we fully implemented
payment logistics, partially implemented scheme-based
decision making (we parse and store the billing scheme,
but do not currently offer an interface that accepts user
preferences), and did not implement anomaly detection.
These three capabilities, however, are directly entailed in
the system we have described thus far.

We now consider the decisions a user must make even
with the extension automating some aspects of the micro-
payments process. To begin, once on the web, the user
must make a mental decision before clicking on a Google
search result or following a link. Since the extension will

10

https://github.com/SamvitJ/21BC-client
https://gist.github.com/SamvitJ/bdd70aac1c3b9770772a0ba295569d32


automatically pay the initial fee if the service is a payable
one and the fee is below the user’s indicated threshold, the
user must consider if the destination will in fact charge,8

and if so, whether the content will be worth the initial fee
in this particular instance. The user may have placed a
value of 20 cents on New York Times articles, but that does
not imply that the user will always be willing to pay to
read one. While the extension provides a safety net, guar-
anteeing that the user will never pay more than some upper
threshold for a resource, it is still on the user to decide
whether to pay at all or not. Once on a site, a user might
wish to check how much a site is charging, which requires
hovering over or clicking on the extension, at which point
the user has to decide whether it is worth spending more
time on the site. Additionally, when leaving the computer,
the user must deliberately switch out of or close the tab to
stop making payments. Finally, the user has to perform
some degree of maintenance and customization. This in-
cludes ensuring that their Bitcoin wallet is funded, that the
headers generator module is running as expected, and that
the extension is up-to-date with their payment preferences.

Putting together these lists, we see that our proposed
system addresses the cognitive load problem primarily by
automating the technical aspects of transactions, and by
tying payment behavior to actions a user would normally
make while browsing the web (e.g. clicking on a link,
scrolling through a page, exiting a tab). This still leaves the
user the responsibility of actually taking these actions, and
of overriding extension behavior when necessary. While
wrapping payments functionality into existing web activity
reduces the burden on the user in one sense, some of the
psychological weight is merely shifted over to what were
previously inconsequential actions (e.g. following a link
to a news article). Determining the degree to which this
weight has shifted will require subsequent user studies.

7.2 Desired Properties
We now return to the desired properties identified in

Section 4, and briefly evaluate our system on each criteria:

8Whether a particular service will charge or not may in fact be
unclear, e.g. if the site is one the user has never visited before. However,
it is reasonable to assume that if payable web services catch on, search
results snippets and HTML link tags would begin indicating initial fees,
eliminating any guesswork from the process of following a link.

Fundamentals

Measurability. Can a web service accurately track and
bill a client for usage? We achieve measurability by build-
ing a periodic request loop to the payment server into the
Javascript of the monetized webpage. The AJAX requests
in this loop fire whenever the page is active, ensuring that
with every unit of resource usage, the client must issue
a transaction and append payment header fields to the
outgoing request. Since code that runs in the user browser
can be modified by the client, usage must also be indepen-
dently tracked on the server-side. This is something we did
not implement in the prototype, but would be a required
security feature in a commercial deployment of our system.

Granularity. Can it be guaranteed that the client
need never pay for more than the next unit of service, and
the server need never provide service beyond the next unit
of payment, while keeping transaction costs low? Payment
granularity is achieved through use of the micropayments
channels protocol, discussed in Section 2.2. In particular,
every metered payment corresponds to a transaction issued
and signed by the client, and sent to the server, but not
necessarily published. The existence of the escrow and
refund transactions ensure that only the final transaction
must be published. As a result, fees must only be paid on
two transactions – the escrow transaction and the final
transaction.

Distribution

Ease of installation. How many different software
components have to be installed by the client? How much
user configuration is required? The client must install
the 21 Bitcoin Library and headers generator module
on a machine running Linux or OS X, and the browser
extension on a desktop computer with Google Chrome.
The client must then purchase or transfer Bitcoin to the
Bitcoin wallet associated with the generator, and configure
the extension with the desired payment permissions and
the IP address of the generator. Finally, the client must
start the generator as a permanent server process. This is a
fair amount of configuration, and likely precludes usage of
the system, as it is now, by non-technical users. However,
it should easily be possible to bundle the 21 Bitcoin
Library and generator module in a single package, and

11



include all the configuration steps (wallet setup, starting
the server) in a standard GUI-based install process. This
reduces the setup process to the installation of just two
software components – the Chrome extension and the
wallet/generator package.

Modularity. Is it possible to encapsulate all payments-
related functionality in a library that web services can
import into their server-side codebase? Less than 50 lines
of code are required to setup a simple Flask server that
offers free (ad-supported) and payable endpoints to users.
This is possible through our use of the payment.required
Python decorator, a feature in the 21 Bitcoin Library
that performs payment header fields validation for a
server endpoint (e.g. /payable/timerated). The best way
to incorporate payments functionality into a complex,
existing server codebase may simply be to add the
decorator to the appropriate endpoints, thus using it in an
application-specific way.

Deployment

Security. Is the client-server channel secured to
man-in-the-middle attacks? Can any sensitive data
involved be protected in all cases? If the client and
server use HTTPS to communicate, the client should be
protected from man-in-the-middle attacks, and payment
header fields passed on the channel should be inaccessible
to eavesdroppers. To guarantee that no client-side attacks
are possible, the client’s browser and headers generator
should also use HTTPS to communicate, and the browser
should authenticate itself to the generator (see Section 6.3).

Scalability. Can a web service charge, accept, and
securely manage payments from large number of clients
simultaneously? This is a property that we admittedly
did not test for, and that a commercially deployed system
must be built to support. Note that most server-side web
frameworks written for higher-level languages, such as
Flask, support concurrent client connections by default,
and our payments model is built on this assumption. The
specific scalability bottlenecks that payments functionality
might introduce involve payments state and load balancing
(i.e. a client may need to pay the initial fee and subsequent
metered charges to the same server replica) and security
(i.e. isolating servers with Bitcoin wallet credentials from

client-facing servers).

Error handling/recovery. Can the client and server
detect and recover from a broken channel connection
without losing critical state? Our current implementation
of the payments server is stateless, though for reasons
already discussed, this will not be a true of a commercial
implementation. If a connection breaks after the client
has paid the initial fee (e.g. Internet fails, server goes
down, client refreshes or exits the page), and the client
subsequently revisits the page, it may not be reasonable
to charge the client the initial fee again. In our prototype,
we solved this problem by introducing a browser cookie,
which is created when the client pays the initial fee
and deleted when the corresponding billing scheme
expires. Since cookies are subject to tampering, however,
additional state may need to be introduced on the server to
accurately track a client’s payment history.

8 Conclusion
In this paper, we presented the architecture for an auto-

mated micropayments system that enables users to make
payments to web services without taking explicit, sepa-
rate action. A key component of our solution involves
wrapping resource billing schemes and fee payments in
the initial web activity of a page, through the use of special
HTTP header fields. Moreover, the binary state design of
our browser extension, which either takes or refrains from
taking payment action based on its prior configuration,
allows the user to assume a higher level role while navi-
gating the payable web. We also demonstrated a natural
extension of our system to support metered payments, a
comprehensive permission model, and a solution to a pos-
sible security threat. We concluded by discussing the ways
in which our system achieves the stated goal of automation,
while still exhibiting various other desired properties, such
as transactional granularity, modularity, and recoverability.

9 Acknowledgments
We would like to thank the 21.co support team for an-

swering our questions about the 21 Bitcoin Computer.

12



References
[1] T. VanToll, “The web’s cruft problem,”

http://developer.telerik.com/featured/the-webs-
cruft-problem/, July 2015.

[2] G. Aisch, W. Andrews, and J. Keller, “The
cost of mobile ads on 50 news websites,”
http://www.nytimes.com/interactive/2015/10/
01/business/cost-of-mobile-ads.html, October 2015.

[3] J. R. Mayer and J. C. Mitchell, “Third party web
tracking: Policy and technology,” in IEEE Sympo-
sium on Security and Privacy, 2012.

[4] F. Manjoo, “Fall of the banner ad: The monster that
swallowed the web,” http://www.nytimes.com/2014/
11/06/technology/personaltech/banner-ads-the-
monsters-that-swallowed-the-web.html, November
2014.

[5] P. Sawers, “Pay-by-bundle: Curing subscription
fatigue,” http://thenextweb.com/media/2014/03/28/
subscriptions/, March 2014.

[6] G. Ferenstein, “The psychology behind the new
york times paywall,” http://www.fastcompany.com/
1740113/psychology-behind-new-york-times-
paywall, March 2011.

[7] C. Shirky, “Fame vs fortune: Micropayments
and free content,” http://www.shirky.com/writings/
fame_vs_fortune.html, September 2003.

[8] N. Szabo, “Micropayments and mental
transaction costs,” http://szabo.best.vwh.net/
berlinmentalmicro.pdf, March 2011.

[9] C. Shirky, “The case against micropayments,”
http://archive.oreilly.com/pub/a/p2p/2000/12/19/
micropayments.html, December 2000.

[10] A. Odlyzko, “The case against micropayments,” in
Financial Cryptography, 2003.

[11] P. C. Fishburn, A. M. Odlyzko, and R. C. Siders,
“Fixed fee versus unit pricing for information goods:
competition, equilibria, and price wars,” in Internet
Publishing and Beyond: The Economics of Digital

Information and Intellectual Property, B. Kahin and
H. R. Varian, Eds. Cambridge, MA: MIT Press,
2000, pp. 167–189.

[12] C. Dixon and B. Evans, “Advertising vs. mi-
cropayments in the age of ad blockers,” http:
//a16z.com/2015/09/25/a16z-podcast-advertising-
vs-micropayments-in-the-age-of-ad-blockers/,
September 2015.

[13] “Paypal fees,” https://www.paypal.com/webapps/
mpp/paypal-fees, 2016.

[14] “Transaction fees,” https://en.bitcoin.it/wiki/
Transaction_fees, March 2016.

[15] “Bitcoin fees for transactions,” https:
//bitcoinfees.21.co/, 2016.

[16] S. Yassami, N. Drego, I. Sergeev, T. Ju-
lian, D. Harding, and B. S. Srinivasan,
“True micropayments with bitcoin,” https:
//medium.com/@21/true-micropayments-with-
bitcoin-e64fec23ffd8#.sft1o4nvi, February 2016.

[17] M. Carlsten, H. Kalodner, and P. Ellenbogen,
“Bitcoin micropayments applied to proxy rotation,”
https://github.com/hkalodner/java-socks-proxy-
server/tree/master/paperBitcoin, January 2015.

[18] “Working with micropayment channels,” https:
//bitcoinj.github.io/working-with-micropayments,
June 2013.

[19] T. Julian, “The 21 bitrequests library
(two1.bitrequests),” https://21.co/learn/21-lib-
bitrequests/, 2016.

[20] “Get the free 21 bitcoin library,” https://21.co/free/,
2016.

[21] “Streamium,” https://streamium.io/, 2016.

[22] “Would you pay for journalism if you could
get your money back on clickbait?” http:
//www.theverge.com/2016/3/23/11286072/blendle-
micropayments-journalism-money-back-clickbait,
March 2016.

13

http://developer.telerik.com/featured/the-webs-cruft-problem/
http://developer.telerik.com/featured/the-webs-cruft-problem/
http://www.nytimes.com/interactive/2015/10/01/business/cost-of-mobile-ads.html
http://www.nytimes.com/interactive/2015/10/01/business/cost-of-mobile-ads.html
http://www.nytimes.com/2014/11/06/technology/personaltech/banner-ads-the-monsters-that-swallowed-the-web.html
http://www.nytimes.com/2014/11/06/technology/personaltech/banner-ads-the-monsters-that-swallowed-the-web.html
http://www.nytimes.com/2014/11/06/technology/personaltech/banner-ads-the-monsters-that-swallowed-the-web.html
http://thenextweb.com/media/2014/03/28/subscriptions/
http://thenextweb.com/media/2014/03/28/subscriptions/
http://www.fastcompany.com/1740113/psychology-behind-new-york-times-paywall
http://www.fastcompany.com/1740113/psychology-behind-new-york-times-paywall
http://www.fastcompany.com/1740113/psychology-behind-new-york-times-paywall
http://www.shirky.com/writings/fame_vs_fortune.html
http://www.shirky.com/writings/fame_vs_fortune.html
http://szabo.best.vwh.net/berlinmentalmicro.pdf
http://szabo.best.vwh.net/berlinmentalmicro.pdf
http://archive.oreilly.com/pub/a/p2p/2000/12/19/micropayments.html
http://archive.oreilly.com/pub/a/p2p/2000/12/19/micropayments.html
http://a16z.com/2015/09/25/a16z-podcast-advertising-vs-micropayments-in-the-age-of-ad-blockers/
http://a16z.com/2015/09/25/a16z-podcast-advertising-vs-micropayments-in-the-age-of-ad-blockers/
http://a16z.com/2015/09/25/a16z-podcast-advertising-vs-micropayments-in-the-age-of-ad-blockers/
https://www.paypal.com/webapps/mpp/paypal-fees
https://www.paypal.com/webapps/mpp/paypal-fees
https://en.bitcoin.it/wiki/Transaction_fees
https://en.bitcoin.it/wiki/Transaction_fees
https://bitcoinfees.21.co/
https://bitcoinfees.21.co/
https://medium.com/@21/true-micropayments-with-bitcoin-e64fec23ffd8#.sft1o4nvi
https://medium.com/@21/true-micropayments-with-bitcoin-e64fec23ffd8#.sft1o4nvi
https://medium.com/@21/true-micropayments-with-bitcoin-e64fec23ffd8#.sft1o4nvi
https://github.com/hkalodner/java-socks-proxy-server/tree/master/paperBitcoin
https://github.com/hkalodner/java-socks-proxy-server/tree/master/paperBitcoin
https://bitcoinj.github.io/working-with-micropayments
https://bitcoinj.github.io/working-with-micropayments
https://21.co/learn/21-lib-bitrequests/
https://21.co/learn/21-lib-bitrequests/
https://21.co/free/
https://streamium.io/
http://www.theverge.com/2016/3/23/11286072/blendle-micropayments-journalism-money-back-clickbait
http://www.theverge.com/2016/3/23/11286072/blendle-micropayments-journalism-money-back-clickbait
http://www.theverge.com/2016/3/23/11286072/blendle-micropayments-journalism-money-back-clickbait


[23] A. Kopping, “Blendle: A radical experi-
ment with micropayments in journalism,”
https://medium.com/on-blendle/blendle-a-radical-
experiment-with-micropayments-in-journalism-
365-days-later-f3b799022edc, April 2015.

[24] “Brave’s response to the naa: A better deal for pub-
lishers,” https://www.brave.com/blogpost_4.html,
April 2016.

[25] “More than a like, better than a share / changetip,”
https://www.changetip.com/, 2016.

[26] “chrome.webrequest,” https://
developer.chrome.com/extensions/webRequest,
2016.

14

https://medium.com/on-blendle/blendle-a-radical-experiment-with-micropayments-in-journalism-365-days-later-f3b799022edc
https://medium.com/on-blendle/blendle-a-radical-experiment-with-micropayments-in-journalism-365-days-later-f3b799022edc
https://medium.com/on-blendle/blendle-a-radical-experiment-with-micropayments-in-journalism-365-days-later-f3b799022edc
https://www.brave.com/blogpost_4.html
https://www.changetip.com/
https://developer.chrome.com/extensions/webRequest
https://developer.chrome.com/extensions/webRequest

	Introduction
	Micropayments
	Contributions

	Background
	Bitcoin
	Micropayment Channels
	The 21 Bitcoin Library

	Related Work
	Approach
	Architecture
	Components
	HTTP 402 Protocol
	Metered Payments
	Permissions Model

	Implementation
	Client-Side Setup
	Browser Extension
	Client Payment Module

	Metered Payments
	Security

	Evaluation
	Automation
	Desired Properties

	Conclusion
	Acknowledgments

