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Abstract

Efficient Inference on Video, In Real-Time and At Scale

by

Samvit Jain

Master of Science in Computer Science

University of California, Berkeley

Professor Joseph Gonzalez, Chair

Neural network inference has transformed computer vision, enabling the automated de-
tection, tracking, and analysis of objects and activities in visual data at human-level accu-
racy. Applying these deep models to real applications, however, requires careful attention to
performance. Model complexity renders inference too slow, in use-cases that demand high
throughput execution (e.g. autonomous perception), and too costly, in use-cases that require
operation at the scale of hundreds of video streams (e.g. post-facto video search).

To address these challenges, I pursue two lines of inquiry.
On the inference speed side, I consider the task of accelerating semantic segmentation,

a classic image recognition task with applications in autonomous perception, on video by
leveraging motion information. Specifically, I explore the use of block motion fields from
compressed video (e.g. MPEG-4 / H.264) to warp deep representations, and a new, two-
stream network architecture to correct warping error. These techniques seek to amortize the
cost of extracting image features, the bottleneck in many neural architectures, over multiple
video frames, while preserving, and in some cases, boosting, model accuracy.

On the compute cost side, I investigate how cross-camera person tracking, a video an-
alytics task with applications in security and retail intelligence, can be executed efficiently
on multiple video streams. Here I demonstrate how a profile of cross-camera correlations,
built offline on historical video data, can be used as a spatial and temporal filter, ruling
out cameras and frames unlikely to contain the target identity at inference time. My ex-
periments shows that this filtering, together with a fallback mechanism, can substantially
reduce compute cost, as well as improve precision, on video analytics workloads.

This body of work is motivated by a simple statement: machine learning systems must
meet the performance requirements of the applications they enable. Advances in deep learning
applied to vision have unlocked opportunity in robotic navigation, industrial and agricultural
monitoring, and retail intelligence, each use case with its own latency, throughput, and cost
constraints. This thesis is a step toward solving this constrained optimization problem.
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Chapter 1

Introduction

A large and growing majority of the data streamed on the Internet today is video. In 2016,
video constituted 73% of web traffic, more than gaming (1%), file sharing (8%), and basic
web data (18%), a figure expected to reach 82% by 2021 [5]. Within video traffic, the most
rapidly growing segment is live video – video that is streamed as it is captured, to social
media users, anomaly detection systems, and other entities, human and non-human. Live
video formed only 3% of video traffic in 2016, but its share is projected to triple by 2021 [5].

Underpinning this growth is a plethora of new use cases – journaling and event broad-
casting (Facebook Live, Twitter Periscope); visual monitoring for industrial and agricultural
oversight, retail intelligence, and public security; and perception-based autonomous systems
(Tesla Autopilot). The video these applications accept as input originates from a wide range
of sources, including cameras on mobile phones, closed-circuit installations, and vehicles.

Many of the above use cases involve querying or transforming this video to make decisions.
We can broadly divide these applications into two categories: perception and analytics.
Perception tasks entail high-resolution inference (e.g. object tracking, scene segmentation),
executed on single video streams. Analytics tends to involve simpler inference queries (e.g.
object search, frame classification), executed on multiple streams or large data stores. Both
classes of applications share similar goals: high accuracy, high inference speed, and low
compute cost. In general, perception tasks tend to be constrained by inference speed (frames
per second), while analytics tasks tend to be constrained by inference cost (dollars per query).

In this thesis, I address both classes of application in detail. In Part I, I investigate the
problem of accelerating semantic segmentation, a classic perception task, on video. My focus
here is how insights about both data (temporal continuity in video) and models (represen-
tation sharing across frames) can be used to achieve better throughput, lower latency, and
higher accuracy at inference time. Specifically, I show that multi-frame neural networks that
cache image representations, and leverage motion information in video to propagate these
representations, can outperform networks that process each video frame in isolation.

In Part II, I examine the opposite end of the spectrum: simpler analytics tasks, exe-
cuted on many concurrent video streams. In particular, I look at how cross-camera person
search, the task of tracking a query identity in real-time through a camera network, can be
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executed more effectively by leveraging historical knowledge of cross-camera traffic patterns.
This past data, encoded as a spatio-temporal correlation model indicating the likelihood of
particular camera-to-camera trajectories, can be used to filter out cameras and frames un-
likely to contain the target identity at inference time. Our experiments in Part II show that
such spatio-temporal pruning enables substantially lower compute cost, and higher tracking
precision, than blind cross-camera person search.

Together, these two respective lines of work, on high-throughput perception and low-
cost video analytics, illustrate the promising applicability of ideas from computer systems
to problems in machine learning. With this thesis, I hope to highlight the critical role that
research on performance-oriented computer vision, one key area where systems and machine
learning meet, will play in enabling new applications of machine intelligence.
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Part I

Efficient Semantic Segmentation
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Chapter 2

Inference on Compressed Video

2.1 Introduction

Semantic segmentation, the task of assigning each pixel in an image to a semantic object
class (e.g. “sky”, “vehicle”, “person”), is a problem of long-standing interest in computer
vision. Like models for other image recognition tasks (e.g. classification, detection, instance
segmentation), semantic segmentation networks have grown drastically in both layer depth
and parameter count in recent years, in the effort to segment more complex images, from
larger, more realistic datasets, at higher accuracy. As a result, state-of-the-art segmentation
networks today require between 0.5 to 3.0 seconds to segment a single, high-resolution image
(e.g. 2048× 1024 pixels) at competitive accuracy [105, 37].

Meanwhile, a new target data format for segmentation has emerged: video. The motivat-
ing use cases include both batch applications, where video is segmented in bulk to generate
training data for other models (e.g. autonomous control systems), and streaming applica-
tions, where high-throughput video segmentation enables interactive analysis of live footage
(e.g. at surveillance sites). Video in these contexts consists of long image sequences, shot at
high frame rates (e.g. 30 fps) in complex environments (e.g. urban cityscapes) on modern,
high-definition cameras. Segmenting individual frames at high accuracy still calls for the use
of competitive image models, but their inference cost precludes their näıve deployment on
every frame in a raw multi-hour video stream.

A defining characteristic of realistic video is its high level of temporal continuity. Con-
secutive frames demonstrate significant spatial similarity, which suggests the potential to
reuse computation across frames. Building on prior work, we exploit two observations: 1)
higher-level features evolve more slowly than raw pixel content in video, and 2) feature com-
putation tends to be much more expensive than task-specific computation across a range of
vision tasks (e.g. detection, segmentation) [81, 105]. Accordingly, we divide our semantic
segmentation model into a deep feature network and a cheap, shallow task network [105].
We compute features only on designated keyframes, and propagate them to intermediate
frames, by warping the feature maps with frame-to-frame motion estimates. The task net-
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Figure 2.1: interpolation-BMV warps and fuses (interpolates) the features of enclosing
keyframes to generate accurate feature estimates for intermediate frames, using the block
motion vectors (BMVs) present in compressed (H.264 / HVEC) video.

work is executed on all frames. Given that feature warping and task computation is much
cheaper than feature extraction, a key parameter we aim to optimize is the interval between
designated keyframes.

Here we make two key contributions. First, noting the high level of data redundancy in
video, we successfully utilize an artifact of compressed video, block motion vectors (BMV), to
cheaply propagate features from frame to frame. Unlike other motion estimation techniques,
which require specialized computation, block motion vectors are freely available in modern
video formats, making for a simple, fast design. Second, we propose a novel feature estima-
tion technique that enables the features for a large fraction of video frames to be inferred
accurately and efficiently (see Fig. 2.1). In particular, when computing the segmentation for
a keyframe, we also precompute the features for the next designated keyframe. Features for
all subsequent intermediate frames are then computed as a fusion of features warped forward
from the last visited keyframe, and features warped backward from the incoming keyframe.
This procedure implements an interpolation of the features of the two closest keyframes. We
then combine the two ideas, using block motion vectors to perform the feature warping in
feature interpolation. The result is a scheme we call interpolation-BMV.

We evaluate our framework on the CamVid and Cityscapes datasets. Our baseline con-
sists of running a competitive segmentation network, DeepLab [18], on every frame, a setup
that achieves published accuracy [25], and throughput of 3.6 frames per second (fps) on
CamVid and 1.3 fps on Cityscapes. Our improvements come in two phases. First, our use
of motion vectors for feature propagation allow us to cut inference time on intermediate
frames by 53%, compared to approaches based on optical-flow, such as [105]. Second, our bi-
directional feature warping and fusion scheme achieves substantial accuracy improvements,
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especially at high keyframe intervals. Together, the two techniques allow us to operate at
over twice the average inference speed as the fastest prior work, at any target level of ac-
curacy. For example, if we are willing to tolerate no worse than 65 mIoU on our CamVid
video stream, we are able to operate at a throughput of 20.1 fps, compared to the 8.0 fps
achieved by the forward flow-based propagation from [105]. Overall, even when operating
in high accuracy regimes (e.g. within 3% mIoU of the baseline), we are able to accelerate
segmentation on video by a factor of 2-6×.

2.2 Related Work

Image Semantic Segmentation

Semantic segmentation is a classical image recognition task in computer vision, originally
studied in the context of statistical inference. Historically, the approach of choice was to
propagate evidence about pixel class assignments through a probabilistic graphical model
[33, 82], a technique that scaled poorly to large images with numerous object classes [57]. In
2014, Long et al. [64] proposed the use of fully convolutional neural networks (FCNs) to seg-
ment images, demonstrating significant accuracy gains on several key datasets. Subsequent
work embraced the FCN architecture, proposing augmentations such as dilated (atrous)
convolutions [96], post-processing CRFs [19], and pyramid spatial pooling [102] to further
improve accuracy on large, complex images.

Efficient Video Semantic Segmentation

The recent rise of applications such as autonomous driving, industrial robotics, and au-
tomated video surveillance, where agents must perceive and act on the visual world as it
evolves, has triggered substantial interest in the problem of efficient video semantic segmen-
tation. Shelhamer et al. [81] and Zhu et al. [105] proposed basic feature reuse and optical
flow-based feature warping, respectively, to reduce the inference cost of running expensive
image segmentation models on video. Recent work explores adaptive feature propagation,
partial feature updating, and adaptive keyframe selection as techniques to further optimize
the scheduling and execution of optical-flow based warping [106, 60, 93]. In general, these
techniques fall short in two respects: (1) optical flow computation remains a computational
bottleneck, especially as other network components become cheaper, and (2) forward feature
propagation fails to account for other forms of temporal change, besides spatial displacement,
such as new scene content (e.g. new objects), perspective changes (e.g. camera pans), and
observer movement (e.g. in driving footage). As a result, full frame features must still
be recomputed frequently to maintain accuracy, especially in video footage with complex
dynamics, fundamentally limiting the attainable speedup.
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Motion and Compressed Video

Wu et al. [90] train a network directly on compressed video to improve both accuracy and
performance on video action recognition. Zhang et al. [98] replace the optical flow network
in the classical two-stream architecture [83] with a “motion vector CNN”, but encounter
accuracy challenges, which they address with various transfer learning schemes. Unlike these
works, our main focus is not efficient training, nor reducing the physical size of input data to
strengthen the underlying signal for video-level tasks, such as action recognition. We instead
focus on a class of dense prediction tasks, notably semantic segmentation, that involve high-
dimensional output (e.g. a class prediction for every pixel in an image) generated on the
original uncompressed frames of a video. This means that we must still process each frame
in isolation. To the best of our knowledge, we are the first to propose the use of compressed
video artifacts to warp deep neural representations, with the goal of drastically improved
inference throughput on realistic video.

2.3 System Overview

Network Architecture

We follow the common practice of adapting a competitive image classification model (e.g.
ResNet-101) into a fully convolutional network trained on the semantic segmentation task
[64, 97, 18]. We identify two logical components in our final model: a feature network, which

takes as input an image i ∈ R1×3×h×w and outputs a representation fi ∈ R1×A× h
16
× w

16 , and
a task network, which given the representation, computes class predictions for each pixel in
the image, pi ∈ R1×C×h×w.

The feature network Nfeat is obtained by eliminating the final, k-way classification layer in
the chosen image classification architecture. The task network Ntask is built by concatenating
four blocks: (1) a feature projection block, which reduces the feature channel dimensionality
from A to A

2
through a 1 × 1 convolutional layer and ReLU, (2) a scoring block, a 1 × 1

convolutional layer which outputs scores for each of the C segmentation classes, (3) an
upsampling block, which bilinearly upsamples the score maps to the resolution of the input
image, and (4) a prediction block, which converts scores to normalized class probabilities
(softmax) and then a final class prediction (argmax) for each pixel.

Block Motion Vectors

MPEG-compressed video consists of two logical components: reference frames, called I-
frames, and delta frames, called either P-frames or B-frames. Reference frames are still
RGB frames from the video, usually represented as spatially-compressed JPEG images. Delta
frames, which introduce temporal compression to video, consist of two subcomponents: block
motion vectors and residuals.
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Block motion vectors, the artifact of interest in our current work, define a correspondence
between pixels in the current frame and pixels in the previous frame. They are generated
using block motion compensation, a standard procedure in video compression algorithms [77]:

1. Divide the current frame into a non-overlapping grid of 16× 16 pixel blocks.

2. For each block in the current frame, determine the “best matching” block in the pre-
vious frame. A common matching metric is to minimize mean squared error between
the blocks.

3. For each block in the current frame, represent the pixel offset to the best matching
block in the previous frame as an (x, y) coordinate pair, or motion vector.

The resulting grid of (x, y) offsets forms the block motion vector map for the current
frame. For a 16M×16N frame, this map has dimensions M×N . The residuals then consist
of the pixel-level difference between the current frame, and the previous frame transformed
by the motion vectors.

Feature Propagation

Many cameras compress video by default as a means for efficient storage and transmission.
The availability of a free form of motion estimation at inference time, the motion vector
maps in MPEG-compressed video, suggests the following scheme for fast video segmentation
(see Algorithm 1).

Algorithm 1 Feature propagation with block motion vectors (prop-BMV)

1: input: video frames {Ii}, motion vectors mv, keyframe interval n
2: for frame Ii in {Ii} do
3: if i mod n = 0 then . keyframe
4: fi ← Nfeat(Ii) . keyframe features
5: Si ← Ntask(fi)
6: else . intermediate frame
7: fi ← warp(fc,−mv[i])) . warp cached features
8: Si ← Ntask(fi)
9: end if
10: fc ← fi . cache features
11: end for
12: output: frame segmentations {Si}

Choose a keyframe interval n. On keyframes (every nth frame), execute the feature
network Nfeat to obtain a feature map. Cache these computed features, fc, and then execute
the task network Ntask to obtain the keyframe segmentation. On intermediate frames, extract
the motion vectors mv[i] corresponding to the current frame index. Warp the cached features
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Figure 2.2: A sample runtime breakdown for a ResNet-101 DeepLab network. F is the
optical flow network [34]. W is the warp operator. GPU: Tesla K80. Dataset: Cityscapes.

fc one frame forward via bilinear interpolation with −mv[i]. (To warp forward, we apply
the negation of the vector map.) Here we employ the differentiable, parameter-free spatial
warping operator proposed by [48]. Finally, execute Ntask on the warped features to obtain
the current segmentation.

Inference Runtime Analysis

Feature propagation is effective because it relegates feature extraction, the most expensive
network component, to select keyframes. Of the three remaining operations performed on
intermediate frames – motion estimation, feature warping, and task execution – motion
estimation with optical flow is the most expensive (see Fig. 2.2). By using block motion, we
eliminate this remaining bottleneck, accelerating inference times on intermediate frames for
a DeepLab segmentation network [18] from 116 ms per frame (F +W +Ntask) to 54 ms per
frame (W + Ntask) on the Cityscapes dataset. For keyframe interval n, this translates to a
speedup of 53% on n−1

n
of the video frames.

Note that for a given keyframe interval n, as we reduce inference time on intermediate
frames to zero, we approach a maximum attainable speedup factor of n over a frame-by-
frame baseline that runs the full model on every frame. Exceeding this bound, without
compromising on accuracy, requires an entirely new approach to feature estimation, the
subject of the next section.

Incidentally, we also benchmarked the time required to extract block motion vectors
from raw video (i.e. H.264 compression time), and found that ffmpeg takes 2.78 seconds
to compress 1,000 Cityscapes video frames, or 2.78 ms per frame. In contrast, optical
flow computation on a frame pair takes 62 ms (Fig. 2.2). We include this comparison for
completeness: since compression is a default behavior on modern cameras, block motion
extraction is not a true component of inference time.

Feature Interpolation

Given an input video stream, our goal is to compute the segmentation of every frame as
efficiently as possible, while preserving accuracy. In a batch setting, we have access to the
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entire video, and desire the segmentations for all the frames, as input to another model
(e.g. an autonomous control system). In a streaming setting, we have access to frames as
they come in, but may be willing to tolerate a small delay of keyframe interval n frames
( n

30
seconds at 30 fps) before we output a segmentation, if that means we can match the

throughput of the video stream and maintain high accuracy.
We make two observations. First, all intermediate frames in a video by definition lie

between two designated keyframes, which represent bounds on the current scene. New
objects that are missed in forward feature propagation schemes are more likely to be captured
if both past and incoming keyframes are used. Second, feature fusion techniques are effective
at preserving strong signals in any one input feature map, as seen in [31]. This suggests the
viability of estimating the features of intermediate frames as the fusion of the features of
enclosing keyframes.

Expanding on this idea, we propose the following algorithm (see Fig. 2.1). On any given
keyframe, precompute the features for the next keyframe. On intermediate frames, warp the
previous keyframe’s features, Nfeat(Ik), forward to the current frame Ii using incremental
forward motion estimates, −mv[k : i]. Warp the next keyframe’s features, Nfeat(Ik+n),
backward to the current frame using incremental backward motion estimates, mv[k + n : i].
Fuse the two feature maps using either a weighted average or learned fusion operator, F .
Then execute the task network Ntask on the fused features. This forms Algorithm 2.

To eliminate redundant computation, on keyframes, we precompute forward and back-
ward warped feature maps f f , f b corresponding to each subsequent intermediate frame,
{Ik+1, ..., Ik+n−1}. For keyframe interval n, this amounts to n − 1 forward and n − 1 back-
ward warped feature maps.

Feature Fusion

We consider several possible fusion operators: max fusion, average fusion, and convolutional
fusion [31]. We implement max and average fusion by aligning the input feature maps f f , f b ∈
R1×C×h×w along the channel dimension, and computing a max or average across each pixel
in corresponding channels, a parameter-free operation. We implement convolutional fusion
by stacking the input feature maps along the channel dimension [f f , f b]C = f s ∈ R1×2C×h×w,
and applying a bank of learned, 1× 1 convolutional filters that perform a weighted sum over
the channel dimension and reduce the channel dimensionality by a factor of two.

Before applying the fusion operator, we weight the two input feature maps f f , f b by
scalars α and 1− α, respectively, that correspond to feature relevance, a scheme that works
very effectively in practice. For keyframe interval n, and a frame at offsets p and n − p
from the previous and next keyframes, respectively, we set α = n−p

n
and 1− α = p

n
, thereby

penalizing the input features warped farther from their keyframe. Thus, when p is small
relative to n, we weight the previous keyframe’s features more heavily, and vice versa. In
summary, the features for intermediate frame Ii are set to: fi = F (n−p

n
f f , p

n
f b), where

p = i mod n. This scheme is reflected in Algorithm 2.
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Algorithm 2 Feature interpolation with block motion vectors (inter-BMV)

1: input: video frames {Ii}, motion vectors mv, keyframe interval n
2: Wf ,Wb ← [] . forward, backward warped features
3: for frame Ii in {Ii} do
4: if i mod n == 0 then . keyframe
5: fi ← Nfeat(Ii) . curr keyframe features
6: Si ← Ntask(fi)
7: fi+n ← Nfeat(Ii+n) . next keyframe features
8: Wf ← propagate(fi, n− 1,−mv[i+ 1 : i+ n])
9: Wb ← propagate(fi+n, n− 1,mv[i+ n : i+ 1])
10: else . intermediate frame
11: p← i mod n . offset from prev keyframe
12: fi ← F (n−p

n
·Wf [p], p

n
·Wb[n− p]) . fuse propagated features

13: Si ← Ntask(fi)
14: end if
15: end for
16: output: frame segmentations {Si}

17: function propagate(features f , steps n, warp array g) . warp f for n steps with g
18: O ← [f ]
19: for i = 1 to n do
20: append(O,warp(O[i− 1], g[i])) . warp features one step
21: end for
22: return O
23: end function

2.4 Experiments

Datasets

We train and evaluate our system on CamVid [12] and Cityscapes [22], two popular, large-
scale datasets for complex urban scene understanding. CamVid consists of over 10 minutes of
footage captured at 30 fps and 960×720 pixels. Cityscapes consists of 30-frame video snippets
shot at 17 fps and 2048× 1024 pixels. On CamVid, we adopt the standard train-test split of
[85]. On Cityscapes, we train on the train split and evaluate on the val split, following the
example of previous work [97, 18, 105]. We use the standard mean intersection-over-union
(mIoU) metric to evaluate segmentation accuracy, and measure throughput in frames per
second (fps) to evaluate inference performance.
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Architecture

For our segmentation network, we adopt a variant of the DeepLab architecture called De-
formable DeepLab [25], which employs deformable convolutions in the last ResNet block
(conv5) to achieve slightly higher accuracy than a standard DeepLab model. DeepLab [18]
is widely considered a state-of-the-art architecture for semantic segmentation, and a DeepLab
implementation currently ranks first on the PASCAL VOC object segmentation challenge
[8]. Our DeepLab model uses ResNet-101 as its feature network, which produces represen-

tations fi ∈ R1×2048× h
16
× w

16 . The DeepLab task network outputs predictions pi ∈ R1×C×h×w,
where C is 12 or 20 for CamVid and Cityscapes respectively.

Training

To train our single-frame DeepLab model, we initialize with an ImageNet-trained ResNet-
101 model, and learn task-specific weights on the CamVid and Cityscapes train sets. To
train our video segmentation system, we sample at random a labeled image from the train
set, and select a preceding and succeeding frame to serve as the previous and next keyframe,
respectively. Since motion estimation with block motion vectors and feature warping are
both parameter-free, feature propagation introduces no additional weights. Training feature
interpolation with convolutional fusion, however, involves learning weights for the 1 × 1
convolutional fusion layer, which is applied to stacked feature maps, each with channel
dimension 2048. For both schemes, we train with SGD on an AWS EC2 instance with 4
Tesla K80 GPUs for 50 epochs, starting with a learning rate of 10−3.

Results

Baseline

For our accuracy and performance baseline, we evaluate our full DeepLab model on every
labeled frame in the CamVid and Cityscapes test splits. Our baseline achieves an accuracy
of 68.6 mIoU on CamVid, at a throughput of 3.7 fps. On Cityscapes, the baseline model
achieves 75.2 mIoU, matching published results for Deformable DeepLab [25], at 1.3 fps.

Propagation and Interpolation

In this section, we evaluate our two main contributions: 1) feature propagation with block
motion vectors (prop-BMV), and 2) feature interpolation, our new feature estimation
scheme, implemented with block motion vectors (inter-BMV). We compare to the clos-
est available existing work on the problem, a feature propagation scheme based on optical
flow [105] (prop-flow). We evaluate by comparing accuracy-runtime curves for the three
approaches on CamVid and Cityscapes (see Fig. 2.3). These curves are generated by plotting
accuracy against throughput at each keyframe interval in Tables 2.4 and 2.5 (see Appendix,
Sec. 2.6), which contain comprehensive results.
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Figure 2.3: Accuracy (avg.) vs. throughput for all schemes on CamVid and Cityscapes.
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Figure 2.4: Accuracy (min.) vs. throughput for all schemes on CamVid and Cityscapes.

First, we note that block motion-based feature propagation (prop-BMV) outperforms
optical flow-based propagation (prop-flow) at all but the lowest throughputs. While motion
vectors are slightly less accurate than optical flow in general, by cutting inference times by
53% on intermediate frames (Sec. 2.3), prop-BMV enables operation at much lower keyframe
intervals than optical flow to achieve the same inference rates. This results in a much more
favorable accuracy-throughput curve.

Second, we find that our feature interpolation scheme (inter-BMV) strictly outperforms
both feature propagation schemes. At every keyframe interval, inter-BMV is more accurate
than prop-flow and prop-BMV; moreover, it operates at similar throughput to prop-BMV.
This translates to a consistent advantage over prop-BMV, and an even larger advantage over
prop-flow (see Fig. 2.3). On CamVid, inter-BMV actually registers a small accuracy gain
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over the baseline at keyframe intervals 2 and 3, utilizing multi-frame context to improve on
the accuracy of the single-frame DeepLab model.

Metrics. We also distinguish between two metrics: the standard average accuracy,
results for which are plotted in Fig. 2.3, and minimum accuracy, which is a measure of the
lowest frame-level accuracy an approach entails, i.e. accuracy on frames farthest away from
keyframes. Minimum accuracy (see Fig. 2.4) is the appropriate metric to consider when we
wish to segment a video as efficiently as possible, while ensuring that all frame segmentations
meet some threshold level of accuracy. As an example, at an accuracy target of 65 mIoU,
feature interpolation enables operation at 20.1 fps on CamVid (see Fig. 2.4a). This is 2.5×
faster than achievable inference speeds with feature propagation alone, using either optical
flow (8.0 fps) or block motion vectors (9.3 fps). In general, feature interpolation achieves
over twice the throughput as [105] on CamVid and Cityscapes, at any target accuracy.

Table 2.1: Comparing inter-BMV to various related work on CamVid.

Scheme Accuracy (mIoU, %) Throughput (fps) Model

GRFP [71] 66.1 – D8+GRFP (best)

DFF [105] 67.4 8.0 KI=3

LinkNet [17] 68.3 – LinkNet (best)

inter-BMV 68.7 9.1 KI=3

DDSC [10] 70.9 – Single scale (best)

Table 2.2: Comparing inter-BMV to various related work on Cityscapes.

Scheme Accuracy (mIoU, %) Throughput (fps) Model

Clockwork [81] 64.4 – Alternating (best)

DRN [97] 70.9 – DRN-C-42 (best)

DeepLab-v3 [18] 71.4 – DL-101 (best)

DFF [105] 72.0 3.0 KI=3

inter-BMV 72.5 3.4 KI=3

RefineNet [62] 73.6 – RN-101 (best)

Baseline. We also compare to our frame-by-frame DeepLab baseline, which offers low
throughput but high average accuracy. As Figures 2.3a and 2.3b indicate, even at average
accuracies above 68 mIoU on CamVid and 70 mIoU on Cityscapes, figures competitive with
contemporary single-frame models (see Table 2.1 and Table 2.2), feature interpolation offers
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Figure 2.5: Example segmentations at keyframe interval 7. Column k + i corresponds to
outputs i frames past the selected keyframe k. First row: input frames. Second row:
prop-flow [105]. Third row: inter-BMV (us). Note that, by k+ 6, prop-flow has significant
warped the moving car, obscuring the people, vehicle, and street sign in the background
(image center), while these entities remain clearly visible with interpolation, which exploits
full scene context. Dataset: Cityscapes.

speedups of 4.5× and 4.2×, respectively, over the baseline. Notably, at key interval 3,
interpolation obtains a 2.5× speedup over the baseline on CamVid, at slightly higher than
baseline accuracy (see Fig. 2.3a).

Delay. Recall that feature interpolation introduces a delay of keyframe interval n frames,
which corresponds to n

30
seconds at 30 fps. For example, at n = 3, inter-BMV introduces

a delay of 3
30

seconds, or 100 ms. To put this in context, prop-flow [105] takes 125 ms to
segment a frame at key interval 3, and inter-BMV takes 110 ms. Thus, by lagging by less
than 1 segmentation, we are able to segment 2.5× more frames per hour than the frame-by-
frame model (9.1 fps vs. 3.6 fps). This is a suitable tradeoff in almost all batch settings (e.g.
training data generation, post-hoc video analysis), and in many interactive applications (e.g.
video anomaly detection, film editing).

Fig. 2.5 depicts a qualitative comparison of interpolation and prop-flow [105].

Feature Fusion

In this second set of experiments, we evaluate the accuracy gain achieved by feature fusion, in
order to isolate the contribution of fusion to the success of our feature interpolation scheme.
As Table 2.3 demonstrates, utilizing any fusion strategy, whether max, average, or conv
fusion, results in higher accuracy than using either input feature map alone. This holds
true even when one feature map is significantly stronger than the other (rows 2-4), and for
both short and long distances to the keyframes. This observed additive effect suggests that
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feature fusion is highly effective at capturing signal that appears in only one input feature
map, and in merging spatial information across time.

Table 2.3: An evaluation of feature fusion. We report final accuracies for various keyframe
placements. forward and backward refer to the input feature maps. Dataset: Cityscapes.

Distance forward backward max fusion avg fusion conv fusion

to keyframe(s) mIoU mIoU mIoU mIoU mIoU

1 71.8 69.9 72.6 72.8 72.6

2 67.8 62.4 68.2 68.5 68.2

3 64.9 59.8 66.3 66.7 66.4

4 62.4 57.3 64.5 65.0 64.7

2.5 Conclusions

We develop interpolation-BMV, a novel segmentation scheme that combines the use of
block motion vectors for feature warping, bi-directional propagation to capture scene context,
and feature fusion to produce accurate frame segmentations at high throughput. We evaluate
on the CamVid and Cityscapes datasets, and demonstrate significant speedups across a
range of accuracy levels, compared to both a strong single-frame baseline and prior work.
Our methods are general, and represent an important advance in the effort to operate image
models efficiently on video.

2.6 Appendix

This section includes full tabular results for the CamVid and Cityscapes datasets (Table 2.4
and Table 2.5).
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Table 2.4: Accuracy and throughput on CamVid for three schemes: (1) feature propaga-
tion with optical flow [105] (prop-flow), (2) feature propagation with block motion vectors
(prop-BMV), and (3) feature interpolation with block motion vectors (inter-BMV).

keyframe interval

Metric Scheme 1 2 3 4 5 6 7 8 9 10

mIoU, avg prop-flow 68.6 67.8 67.4 66.3 66.0 65.8 64.2 63.6 64.0 63.1

(%) prop-BMV 68.6 67.8 67.3 66.2 65.9 65.7 64.2 63.7 63.8 63.4

inter-BMV 68.6 68.7 68.7 68.4 68.4 68.2 68.0 67.5 67.0 67.3

mIoU, min prop-flow 68.5 67.0 66.2 64.9 63.6 62.7 61.3 60.5 59.7 58.7

(%) prop-BMV 68.5 67.0 65.9 64.7 63.4 62.7 61.4 60.8 60.0 59.3

inter-BMV 68.5 68.6 68.4 68.2 67.9 67.4 67.0 66.4 66.1 65.7

throughput prop-flow 3.6 6.2 8.0 9.4 10.5 11.0 11.7 12.0 13.3 13.7

(fps) prop-BMV 3.6 6.7 9.3 11.6 13.6 15.3 17.0 18.2 20.2 21.3

inter-BMV 3.6 6.6 9.1 11.3 13.1 14.7 16.2 17.3 19.1 20.1

Table 2.5: Accuracy and throughput on Cityscapes for the three schemes: prop-flow [105],
prop-BMV, and inter-BMV.

keyframe interval

Metric Scheme 1 2 3 4 5 6 7 8 9 10

mIoU, avg prop-flow 75.2 73.8 72.0 70.2 68.7 67.3 65.0 63.4 62.4 60.6

(%) prop-BMV 75.2 73.1 71.3 69.4 68.2 67.3 65.0 64.0 63.2 61.7

inter-BMV 75.2 73.9 72.5 71.2 70.5 69.9 68.5 67.5 66.9 66.6

mIoU, min prop-flow 75.2 72.4 68.9 65.6 62.4 59.1 56.3 54.4 52.5 50.5

(%) prop-BMV 75.2 71.3 67.7 64.8 62.4 60.1 58.5 56.9 55.0 53.7

inter-BMV 75.2 72.5 71.5 68.0 67.2 66.2 65.4 64.6 63.5 62.9

throughput prop-flow 1.3 2.3 3.0 3.5 4.0 4.3 4.6 4.9 5.1 5.3

(fps) prop-BMV 1.3 2.5 3.4 4.3 5.0 5.6 6.2 6.7 7.1 7.6

inter-BMV 1.3 2.4 3.4 4.2 4.9 5.4 6.0 6.4 6.9 7.2
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Chapter 3

Accel: Corrective Fusion

3.1 Introduction

Semantic segmentation is an intensive computer vision task that involves generating class
predictions for each pixel in an image, where classes range from foreground objects such
as “person” and “vehicle” to background entities such as “building” and “sky”. When
applied to frames in high resolution video, this task becomes yet more expensive, as the high
spatial dimensionality of the output is further scaled by the video’s temporal frame rate
(e.g. 30 frames per second). By treating video as a collection of uncorrelated still images,
contemporary approaches to semantic video segmentation incur this full computational cost,
achieving inference throughput of less than 1.5 frames per second (fps) on a 30 fps video
feed [18, 25, 97]. Moreover, by ignoring temporal context, frame-by-frame approaches fail to
realize the potential for improved accuracy offered by the availability of nearby frames.

Prior work has proposed feature reuse and feature warping as means to reduce compu-
tation on video. In particular, exploiting the observation that higher-level representations
evolve more slowly than raw pixels in a video [81], these approaches relegate feature extrac-
tion, the most expensive component of most video recognition architectures [105], to select
keyframes, and project these features forward via näıve copying or warping based on optical
flow. While feature warping does enable some speedup [105], its efficacy is constrained by
video dynamics. Fast scene evolution necessitates frequent feature re-computation, and fea-
ture warping in videos with a moving observer (e.g. driving footage), where the entire scene
moves relative to the camera, introduces significant warping error. Warping error, moreover,
compounds with repeated application of the warping operator.

Our proposed system, Accel (Fig. 3.1), addresses the challenges of efficient video segmen-
tation by combining the predictions of a reference branch, which maintains an incrementally
warped representation of the last keyframe, with the predictions of an update branch, which
processes the current frame, in a convolutional fusion step. Importantly, this update branch
has the ability to serve two purposes: 1) correction and 2) anchoring. When a cheap, shallow
update network is used (e.g. ResNet-18), the warped keyframe features form the more accu-
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Figure 3.1: Accel is a fast, high-accuracy, end-to-end trainable video recognition system
that combines two network branches: 1) a reference branch that computes a score map on
high-detail features warped from the last visited keyframe, and 2) a cheap update branch
that corrects this prediction based on features of adjustable quality (e.g. ResNet-18 to
ResNet-101) computed on the current frame.

rate input to the fusion operator, and the update branch corrects warping-related error with
information from the current frame. When an expensive, deep update network is used (e.g.
ResNet-101), the update branch anchors the network on the features of the current frame,
which is the higher accuracy input, while the reference branch augments the prediction with
context from preceding frames. These two modes of operation represent two extremes on
the highly competitive accuracy-throughput trade-off curve Accel unlocks.

We evaluate Accel on Cityscapes and CamVid, the largest available video segmentation
datasets [12, 38, 22], and demonstrate a full range of accuracy-inference speed modalities.
Our reference network, which we operate on keyframes, is an implementation of the DeepLab
segmentation architecture [18] based on ResNet-101. Our chosen update networks range from
the fast ResNet-18 (in Accel-18) to the accurate ResNet-101 (in Accel-101). On the high
throughput side, the cheapest version of Accel, Accel-18, is both faster and more accurate
than the closest comparable DeepLab model. On the high accuracy side, Accel-101 is more
accurate than the best available single-frame model, DeepLab-101. As a set, the ensemble
of Accel models achieve significantly higher accuracy than previous work on the problem at
every keyframe interval. Taken togther, these results form a new state-of-the-art on the task
of efficient semantic video segmentation.

3.2 Related Work

Image Semantic Segmentation

Semantic video segmentation is a recent offshoot of the study of semantic image segmen-
tation, a problem of long-standing interest in computer vision. The classical approach to
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image segmentation was to propagate information about pixel assignments through a graph-
ical model [33, 82, 41], a costly technique that scaled poorly to complex image datasets [57].
Most recent research follows the lead of Long et al. in the use of fully convolutional networks
(FCNs) to segment images [64]. Recent work has augmented the FCN model with explicit
encoder-decoder architectures [9, 62], dilated convolutions [96, 97], and post-processing CRFs
[19, 18], achieving higher accuracy on larger, more realistic datasets [12, 28, 22].

Video Semantic Segmentation

Unlike video object segmentation, where a vast literature exists on using motion and tem-
poral cues to track and segment objects across frames [74, 36, 70, 87], the video semantic
segmentation task, which calls for a pixel-level labeling of the entire frame, is less stud-
ied. The rise of applications in autonomous control and interactive video analysis, however,
have sparked significant interest in the problem of efficient video semantic segmentation.
Recent papers have proposed selective re-execution of feature extraction layers [81], optical
flow-based feature warping [105], and LSTM-based, fixed-budget keyframe selection policies
[66] as means to achieve speedup over frame-by-frame approaches. Of the three, the opti-
cal flow-based approach [105] is the strongest contender, achieving greater cost savings and
higher accuracy than both the first approach, which näıvely copies features, and the third,
which is offline and has yet to demonstrate strong quantitative results. Despite its relative
strength, however, flow-based warping [105] introduces compounding error in the intermedi-
ate representation, and fails to incorporate other forms of temporal change (e.g. new objects,
occlusions). As a result, significant accuracy degradation is observed at moderate to high
keyframe intervals, restricting its achievable speedup.

To address these problems, new work has proposed adaptive feature propagation, partial
feature updating, and adaptive keyframe selection as schemes to optimally schedule and prop-
agate computation on video [106, 60, 93]. These techniques have the drawback of complexity,
requiring the network to learn auxiliary representations to decide: (1) whether to recompute
features for a region or frame, and (2) how to propagate features in a spatially-variant man-
ner. Moreover, they do not fundamentally address the problem of mounting warping error,
instead optimizing the operation of [105]. In contrast, in Accel, we resolve the challenges
by proposing a simple network augmentation: a second branch that cheaply processes each
video frame, and corrects accumulated temporal error in the reference representation.

Network Fusion

Feature and network fusion have been extensively explored in other contexts. A body of
work, beginning with [83] and extending to [31, 30, 32], studies spatial and temporal two-
stream fusion for video action recognition. In the two-stream model, softmax scores of two
network branches, one which operates on single RGB frames (spatial stream) and another on
multi-frame optical flow fields (temporal stream), are fused to discern actions from still video
frames. Variants of this approach have been subsequently applied to video classification [56,
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91] and video object segmentation [50, 86], among other tasks. Unlike spatio-temporal fusion,
which attempts to jointly deduce scene structure from RGB frames and motion for video-level
tasks, the Accel fusion network uses keyframe context and optical flow as a means to conserve
computation and boost accuracy in intensive frame and pixel-level prediction tasks, such as
segmentation. In Accel, both branches process representations of single frames, and motion
(optical flow) is used implicitly in the model to update a latent reference representation.
Together, these design choices make Accel robust and configurable. The fact that network
components are independent, with clear interfaces, allows the entire system to be operated
at multiple performance modalities, via choice of update network (e.g. ResNet-x), motion
input (e.g. optical flow, H.264 block motion [49]), and keyframe interval.

3.3 Approach

Problem Statement

Given a video I composed of frames {I1, I2, ...IT}, we wish to compute the segmentation of
each frame: {S1, S2, ...ST}. We have at our disposal a single-frame segmentation network N
that can segment any still frame in the video: N(Ii) = Si. This network is accurate, but
slow. Since N only takes single images as input, it cannot exploit the temporal continuity
of video; the best we can do is to run N on every frame Ii ∈ I sequentially.

Instead, we would like to develop a video segmentation network N ′ that takes as input a
frame Ii, and potentially additional context (e.g. nearby frames, features, or segmentations),
and renders S ′i. Our goals are two-fold: (1) {S ′i} should be at least as accurate as {Si}, and
(2) running N ′({Ii}) should be faster than running N({Ii}).

Operation Model

Our base single-frame semantic segmentation architecture N consists of three functional
components: (1) a feature subnetwork Nfeat that takes as input an RGB image Ii ∈ R1×3×h×w

and returns an intermediate representation fi ∈ R1×2048× h
16
× w

16 , (2) a task subnetwork Ntask

that takes as input the intermediate representation fi and returns a semantic segmentation
score map si ∈ R1×C×h×w, where C is the number of labeled classes in the dataset, and (3)
an output block P that converts si to normalized probabilities pi ∈ [0, 1]1×C×h×w and then
segmentations Si ∈ R1×1×h×w.

This division follows a common pattern in image and video recognition architectures
[105]. The feature network, Nfeat, is largely identical across different recognition tasks (object
detection, instance segmentation, semantic segmentation), and is obtained by discarding the
final k-way classification layer in a standard image classification network (e.g. ResNet-101),
and decreasing the stride length in the first block of the conv5 layer from 2 to 1 to obtain
higher-resolution feature maps (spatial dimension h

16
× w

16
instead of h

32
× w

32
). The task

network, Ntask, for semantic segmentation includes three blocks: (1) a feature projection
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block, which consists of a 1 × 1 convolutional layer, plus a non-linear activation (ReLU),
and reduces the feature channel dimension from 2048 to 1024, (2) a scoring layer, which
consists of a single 1×1 convolutional layer, and further reduces the channel dimension from
1024 to the C semantic classes, and (3) an upsampling block, which consists of a transposed
convolutional layer and a cropping layer, and upsamples the predicted scores from h

16
× w

16

to the spatial dimensionality of the input image, h× w. Finally, output block P consists of
a softmax layer, followed by an argmax layer.

Exploiting the observation that features can be reused across frames to reduce computa-
tion [81, 105], we now adopt the following operation model on video. Nfeat, which is deep
and expensive, is executed only on select, designated keyframes. Keyframes are selected at
regular intervals, starting with the first frame in the video. The extracted keyframe features
fi are warped to subsequent frames using a computed optical flow field, O. Ntask, which is
shallow and cheap, is executed on every frame. Since computing optical flow O(Ii, Ij) on

pairs of frames, and warping features with the flow field W (fi, O)) → f̂j, is much cheaper
than computing Nfeat(Ij) [105], this scheme saves significant computation on intermediate
frames, which form the vast majority of video frames.

Accel

In Accel, we introduce a lightweight feature network, NU
feat, on intermediate frames to update

score predictions based on the warped keyframe features, with information from the current
frame. On keyframes, we execute our original feature network, now denoted as the reference
feature network, NR

feat. In our system, we use ResNet-101 as NR
feat, and a range of models,

from ResNet-18 to ResNet-101, as NU
feat, depending on specific accuracy-performance goals.

In this section, we discuss a forward pass through this new architecture, Accel (see Fig. 3.2).
On keyframes, denoted by index k, we execute the full reference network P (NR

task(N
R
feat(Ik)))

to yield a segmentation Sk. We cache the intermediate output, NR
feat(Ik), as features f c.

On intermediate frames i, we compute scores sRi and sUi along both a reference branch
and an update branch, respectively. On the reference branch, we warp f c from the previous
frame Ii−1 to the current frame Ii, and then execute NR

task. As our warping operation W , we
spatially transform our cached features f c with a bilinear interpolation of the optical flow
field O(Ii−1, Ii), as in [105]. On the update branch, we run the full update network NU .
Symbolically, the two branches can be represented as:

sRi = NR
task(W (f c, O(Ii−1, Ii))) (3.1)

sUi = NU
task(N

U
feat(Ii)) (3.2)

The score maps sRi and sUi represent two views on the correct class labels for the pixels
in the current frame. These predictions are now merged in a 1 × 1 convolutional fusion
step, which we refer to as score fusion (SF). sRi and sUi are stacked along the channel
dimension, yielding an input sstackedi ∈ R1×2C×h×w. Applying a 1 × 1 convolutional layer
with dimensions C × 2C × 1 × 1 to sstackedi yields an output si ∈ R1×C×h×w. Notationally,
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Figure 3.2: Accel consists of several components: (1) a reference feature net NR
feat executed

on keyframes, (2) an update feature net NU
feat executed on intermediate frames, (3) an optical

flow network O used for feature warping W , (4) two instantiations of Ntask (reference and
update), (5) a 1× 1 convolutional network fusion layer, and (6) a final softmax layer.

si = SF (sstackedi ) = SF ([sRi , s
U
i ]). Finally, applying the output block P to si yields the

segmentation Si of frame Ii.
Note that while the layer definitions of NR

feat and NU
feat differ in general, NR

task and NU
task

are architecturally equivalent, albeit independent, instantiations. This makes Accel highly
modular. Since the task network Ntask has a fixed interface, Accel can accept any feature
network NU

feat that outputs representations fi with the appropriate dimensionality.

Training

Accel can be trained end-to-end on sparsely annotated sequences of video frames. The
entire network consists of the score fusion layer, along with three independently trainable
components, NR, NU , and O, which we now discuss.

For our reference network NR and update network NU , we use a high-accuracy variant
[25] of the DeepLab architecture [18]. DeepLab is a canonical architecture for semantic
segmentation [25, 9, 62, 96], and a DeepLab implementation has consistently ranked first on
the Pascal VOC segmentation benchmark [8]. NR

feat and NU
feat are first trained on ImageNet;

NR and NU are then individually fine-tuned on a semantic segmentation dataset, such as
Cityscapes [22]. In Accel, we fix NR

feat as ResNet-101. We then build an ensemble of models,
based on a range of update feature networks NU

feat: ResNet-18, -34, -50, and -101. This
forms a full spectrum of accuracy-throughput modalities, from a lightweight, competitive
Accel based on ResNet-18, to a slow, extremely accurate Accel based on ResNet-101. For
the third and last independently trainable component, the optical flow network O, we use
the “Simple” architecture from the FlowNet project [34]. This network is pre-trained on the
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synthetic Flying Chairs dataset, and then jointly fine-tuned on the semantic segmentation
task with NR.

To train Accel, we initialize with weights from these three pre-trained models. In each
mini-batch, we select a frame Ij. When training at keyframe interval n, we select frame
Ij−(n−1) from the associated video snippet, and mark it as the corresponding keyframe Ik
for frame Ij. In a forward pass, we execute Accel’s reference branch on frame Ik, and
execute the update branch and fusion step on each subsequent intermediate frame until Ij.
A pixel-level, cross-entropy loss [64] is computed on the predicted segmentation Sj and the
ground-truth label for frame Ij. In the backward pass, gradients are backpropagated through
time through the score fusion operator, the reference and update branches, and the warping
operator, which is parameter-free but fully differentiable. Note that the purpose of joint
training is to learn weights for the score fusion (SF) operator, and to optimize other weights
(i.e. NR

task and NU
task) for the end-to-end task.

Design Choices

Recent work has explored adaptive keyframe scheduling, where keyframes are selected based
on varying video dynamics and feature quality [106, 60, 93]. Here both rapid scene change
and declining feature quality can trigger feature recomputation. We note that keyframe
scheduling is an optimization that is orthogonal to network design, and therefore entirely
compatible with the Accel architecture.

3.4 Experiments

Setup

We evaluate Accel on Cityscapes [22] and CamVid [12], the largest available datasets for
complex urban scene understanding and standard benchmarks for semantic segmentation
[18, 25, 97]. Cityscapes consists of 30-frame snippets of street scenes from 50 European cities,
recorded at a frame rate of 17 frames per second (fps). Individual frames are 2048 × 1024
pixels in size. The train, validation, and test sets consist of 2975, 500, and 1525 snippets each,
with ground truth labels provided for the 20th frame in each train and validation set snippet.
The Cambridge-driving Labeled Video Database (CamVid) consists of over 10 minutes of
footage captured at 30 fps. Frames are 960 by 720 pixels in size, and ground-truth labels
are provided for every 30th frame. We use the standard train-test split of [85], which divides
CamVid into three train and two test sequences, containing 367 and 233 frames, respectively.

To evaluate accuracy, we use the mean intersection-over union (mIoU) metric, standard
for semantic segmentation [28]. mIoU is defined as the average achieved intersection-over-
union value, or Jaccard index, over all valid semantic classes in the dataset. To evaluate
performance, we report average inference time in seconds per frame (s/frame) over the entire
dataset. Note that this is the inverse of throughput (frames per second).
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We train Accel as described in Section 3.3 on Cityscapes and CamVid. We perform 50
epochs of joint training at a learning rate of 5 · 10−4 in two phases. In phase one, all weights
except SF are frozen. In phase two, after 40 epochs, all remaining weights are unfrozen. We
train a reference implementation of [105] by jointly fine-tuning the same implementations
of NR and O. At inference time, we select an operational keyframe interval i, and in each
snippet, choose keyframes such that the distance to the labeled frame rotates uniformly
through [0, i− 1]. This sampling procedure simulates evaluation on a densely labeled video
dataset, where 1

i
frames fall at each keyframe offset between 0 and i− 1. Here we follow the

example of previous work [105].
Finally, Accel is implemented in the MXNet framework [20]. All experiments are run on

Tesla K80 GPUs, at keyframe interval 5, unless otherwise stated.

Results

Baselines

To generate our baseline accuracy-throughput curve, we run single-frame DeepLab [18] mod-
els based on ResNet-18, -34, -50, and -101 on the Cityscapes and CamVid test data. For
both DeepLab and Accel, we use a variant of the ResNet architecture called Deformable
ResNet, which employs deformable convolutions in the last ResNet block (conv5) to achieve
significantly higher accuracy at slightly higher inference cost [25]. We refer to DeepLab
models based on ResNet-x as DeepLab-x, and Accel models based on DeepLab-x as Accel-x.

Accuracy-throughput

Using Accel, we achieve a new, state-of-the-art accuracy-throughput trade-off curve for se-
mantic video segmentation (see Figs. 3.3a, 3.3b).

All Accel models, from Accel-18 to Accel-101, allow operation at high accuracy: above 72
mIoU on Cityscapes and above 66 mIoU on CamVid. At the high accuracy end, Accel-101
is by far the most accurate model, achieving higher mIoU than the best available DeepLab
model, DeepLab-101. At the high throughput end, Accel-18 is both faster and more accurate
than the closest comparable single-frame model, DeepLab-50. Notably, Accel-18 is over 40%
cheaper than DeepLab-101, at only 2-3% lower mIoU. As a rule, each Accel-x model is more
accurate than its single-frame counterpart, DeepLab-x, for all x.

Together, the four Accel models form an operational Pareto curve that clearly supersedes
the Pareto curve defined by the four single-frame DeepLab models (Figs. 3.3a, 3.3b). Accel
also visibly outperforms related work, including Clockwork Convnets [81], Deep Feature Flow
[105], Gated Recurrent Flow Propagation [71], and Dynamic Video Segmentation Network
[93] (see Fig. 3.3a). Though Deep Feature Flow (DFF) offers a strong accuracy-throughput
trade-off in the low accuracy range, due to its fixed architecture, it is not a contender in the
high accuracy regime. We provide a more detailed comparison with DFF in the next section.
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Figure 3.3: Accuracy vs. inference time on Cityscapes and CamVid. Comparing four
variants of Accel (A-x) to single-frame DeepLab models (DL-x) and various other related
work (RW). All results at keyframe interval 5.

We also briefly survey a range of recent, new single-frame segmentation networks. These
include architectures based on spatial pyramid pooling, such as PSPNet, NetWarp, and
DenseASPP [102, 37, 94], which achieve high accuracy (up to 80.6% mIoU on Cityscapes
test) but at steep computational cost. One evaluation [37] finds that PSPNet operates
at 3.00 seconds per Cityscapes frame, even barring any augmentations (e.g. NetWarp)
or advanced settings (e.g. multi-scale ensembling), which is substantially slower than any
DeepLab or Accel variant. Other relevant single-frame network families include the encoder-
decoder architectures (e.g. U-Net [80]), which optimize for accuracy on high-resolution
biomedical images, and the parameter-efficient DenseNets (e.g. FC-DenseNet [52]), for which
segmentation inference times have not yet been reported.

Keyframe intervals

In this section, we extend our evaluation to a range of keyframe intervals from 1 to 10.
Keyframe interval 1 corresponds to running the reference network NR on every frame. As
a result, Deep Feature Flow (DFF) [105] and the Accel variants report the same accuracy
at this setting (see Fig. 3.4). At keyframe intervals above 1, we find that even the cheapest
version of Accel, Accel-18, consistently offers higher accuracy than DFF. In particular, over
keyframe interval 8, a wide accuracy gap emerges, as DFF’s accuracy approaches 60 mIoU
while all Accel models maintain roughly between 70 and 75 mIoU (Fig. 3.4).

This gap is an illustration of the compounding warping error that builds in DFF, but is
corrected in Accel with the advent of the update branch. The trade-off is that Accel models
are slower on intermediate frames: in addition to the inference cost of O and NR

task, which
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Figure 3.4: Accuracy vs. keyframe interval on Cityscapes for optical flow-based warping
alone (DFF) and four variants of Accel. All five schemes use ResNet-101 in NR.

is also paid by DFF, Accel models also incur the cost of NU , which is low when NU
feat is

ResNet-18 and higher when NU
feat is ResNet-101.

Ablation study

We now present a simple ablation study that isolates the contributions of the reference
network NR and the update network NU to the accuracy of Accel (see Table 3.1). Disabling
NU corresponds to using only the optical flow-warped representations from the previous
keyframe. Since all versions of Accel share the same NR, this results in the same accuracy
for all models (row 1). Disabling the reference network NR corresponds to running only
the single-frame update networks, DeepLab-18, -34, -50, or -101, on all frames (row 2).
Disabling neither yields our original models (row 3). Notice the effect of the network fusion:
each unmodified Accel model is more accurate than either of its component subnetworks.
Moreover, Accel-18 observes a 6.8 point accuracy boost over NR via the use of an update
network NU that is cheaper and much less accurate than NR. This confirms the powerful
synergistic effect of combining two contrasting sets of representations: one that is high-detail
but dated, and one that is lower resolution but temporally current.

Fusion location

In this section, we evaluate the impact of fusion location on final network accuracy and
performance. Accel, as described so far, uses a 1× 1 convolutional layer to fuse pre-softmax
class scores, but it was also possible to perform this fusion at an earlier stage. In Table 3.2,
we compare accuracy values and inference times for two fusion variants: (1) feature fusion
(fusion between Nfeat and Ntask) and (2) score fusion (fusion between the score upsampling
block and the softmax layer).
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Table 3.1: Ablation study. A breakdown of the accuracy contributions of NR (reference
branch) and NU (update branch) to Accel. Results for keyframe interval i = 5, at the
maximum offset (4) from the keyframe. Dataset: Cityscapes.

Model

Setting A-18 A-34 A-50 A-101

NR only 62.4 62.4 62.4 62.4

NU only 57.7 62.8 70.1 75.2

Accel 69.2 69.7 73.0 75.5

Table 3.2: Fusion location. An evaluation of the impact of network fusion location on final
accuracy values. Model: Accel-18. Results for keyframe interval i = 5, at the maximum
offset (4) from the keyframe. Dataset: Cityscapes.

Metric

Location Acc. (mIoU) Time (s/frame)

Feature 69.5 0.46

Score 69.2 0.44

As Table 3.2 indicates, score (late) fusion results in slightly lower accuracy, but faster
inference times. Recall that a 1 × 1 convolutional fusion layer is a mapping R1×2C×h×w →
R1×C×h×w, where C is the channel dimensionality of the input. Feature (early) fusion results
in higher accuracy ostensibly because it is executed on higher-dimensionality inputs, allowing
for the discovery of richer channel correspondences (C is 2048 for ResNet feature maps, versus
19 for scores). Inference times, on the other hand, benefit from lower channel dimensionality:
the fusion operator itself is cheaper to execute on scores as opposed to features. We use score
fusion in all except the most accurate model (Accel-101), as in our view, the 5% difference
in inference cost outweighs the more marginal gap in accuracy. Nevertheless, the choice
between the two schemes is a close one.

Finally, we also experimented with the intermediate channel dimensionality, C. ResNets-
50 and -101 traditionally have channel dimension 2048 after the fifth conv block, which is why
C = 2048 was our default choice. In our experiments, we found that using smaller values
of C, such as 512 or 1024, resulted in poorer segmentation accuracy, without noticeably
reducing inference times.
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Qualitative evaluation

In Figure 3.5, we compare the qualitative performance of DFF (Accel NR), DeepLab (Accel
NU), and Accel (NR +NU) on two sequences of 10 frames (top and bottom).

3.5 Conclusions

Accel is a fast, high-accuracy video segmentation system that utilizes the combined predic-
tive power of two network pathways: (1) a reference branch NR that extracts high-quality
features on a reference keyframe, and warps these features forward using incremental optical
flow estimates, and (2) an update branch NU that processes the current frame to correct
accumulated temporal error in the reference representation. Comprehensive experiments
demonstrate a full range of accuracy-inference speed modalities, from a high-throughput
version of Accel that is both faster and more accurate than comparable single-frame models
to a high-accuracy version that exceeds state-of-the-art. The full ensemble of Accel models
consistently outperforms previous work on the problem at all keyframe intervals, while an
ablation study demonstrates that Accel makes significant accuracy gains over its individual
components. Finally, the Accel architecture is modular and end-to-end trainable, serving as
a general example on how to perform dense prediction tasks efficiently on video.

3.6 Appendix

This section includes accuracy and inference times on Cityscapes and CamVid for Accel,
DeepLab, and various related work (Table 3.3 and Table 3.4).
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Table 3.3: Accuracy and inference times on Cityscapes for four single-frame DeepLab
models (DL-x), four variants of Accel (A-x), and various related work. Table ordered by
accuracy. All inference time standard deviations less than 0.01. Each Accel-x model is more
accurate than its single-frame counterpart, DeepLab-x, for all x. Data plotted in Fig. 3.3a.

Model Acc. (mIoU, %) Time (s/frame)

DL-18 57.7 0.22

DL-34 62.8 0.33

CC (Shel. 2016) 67.7 0.14

DFF (Zhu 2017) 68.7 0.25

GRFP (Nils. 2018) 69.4 0.47

DL-50 70.1 0.51

DVSN (Xu 2018) 70.3 0.12

A-18 72.1 0.44

A-34 72.4 0.53

A-50 74.2 0.67

DL-101 75.2 0.74

A-101 75.5 0.87

Table 3.4: Accuracy and inference times on CamVid. Table ordered by accuracy. All
inference time standard deviations less than 0.01. Each Accel-x model is more accurate than
its single-frame counterpart, DeepLab-x, for all x. Data plotted in Fig. 3.3b.

Model Acc. (mIoU, %) Time (s/frame)

DL-18 58.1 0.105

DL-34 60.0 0.123

DL-50 65.5 0.185

DFF (Zhu 2017) 66.0 0.102

A-18 66.7 0.170

A-34 67.0 0.205

A-50 67.7 0.239

DL-101 68.6 0.287

A-101 69.3 0.320
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Figure 3.5: Qualitative outputs. Two frame sequences at keyframe interval 10. Column
k + i corresponds to the ith frame past keyframe k. First row: input frames. Second
row: Accel NR branch / DFF [105]. Third row: Accel NU branch / DeepLab-18. Fourth
row: Accel-18. Note how Accel both corrects DFF’s warping-related distortions in row
2, including the obscured pedestrians (top example) and the distorted vehicles (bottom
example), and avoids DeepLab’s misclassifications in row 3 on the van (top) and vegetation
patch (bottom). Column (c) in the bottom example also qualifies as an error case for Accel,
as unlike DeepLab, Accel misses the street sign on the right.
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Part II

Large-Scale Video Analytics
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Chapter 4

ReXCam: Resource-Efficient
Cross-Camera Analytics

4.1 Introduction

Enterprises are increasingly deploying large camera networks for video analytics, for use
cases ranging from public safety monitoring to patient oversight and business intelligence
[88]. In Chicago, police access footage from 30,000 security cameras installed citywide to
inform their responses to live crime reports [15]. In London, police tap into 12,000 cameras
installed on its underground transit network to identify and investigate threats to public
safety [11, 95]. In Paris, public hospitals plan to install 1,500 new cameras to protect staff
and monitor patients [75].

Close analysis of the live video from these deployments, however, remains a costly under-
taking. Human monitoring does not scale to 1000s of cameras, and state-of-the-art neural
networks are too expensive to operate on each video feed in real-time. In particular, at
1 Nvidia K80 GPU per video feed, automated analytics on the Chicago Public Schools’
7,000-camera deployment [84] would require a $28 million investment in GPU hardware, or
cost $6,300 per hour in GPU cloud time (about $0.9 million per month) [76, 2], significant
expenditures for a publicly-funded school system.

Recent work explores techniques to accelerate simple, per-frame tasks on single-camera
video pipelines [55], and support low-latency, after-the-fact queries on indexed, historical
video [45]. This work, however, does not address the key requirement of real video analytics
applications: cross-camera analytics on live video. Multi-camera inference is the core ca-
pability that enables operators to monitor environments at scale, track and predict entity
movement, and understand complex scenes, for applications such as flow control [39], suspect
tracking [65, 100], and traffic management [65, 99].

Cross-camera analytics, however, is compute and data intensive. Unlike simple, stateless
tasks, such as object detection, cross-camera analytics entails discovering associations, across
frames and across cameras. Whereas cost grows linearly with time for per-frame queries, cost
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Figure 4.1: ReXCam exploits a learned model of spatial and temporal correlations, built on
historical data, to reduce compute workload at inference time. In this figure, the camera
network (compressed to 1-D) is represented on the y-axis, and time on the x-axis. In search-
ing for a query identity, ReXCam eliminates some cameras entirely (spatial filtering), and
searches the others only within a narrow time window (temporal filtering).

in cross-camera analytics also entails a second, spatial dimension – the number of cameras
in the network. For example, in the suspect tracking example, flagging frames containing an
identified perpetrator requires searching both across the camera network (which can span
the entire city) and forward in time, at the throughput of the incoming video stream.

We can formalize the core problem here as follows: given a query instance of an object
or entity of interest, we wish to return all subsequent instances of that identity in the live
video, while examining as few video frames as possible. We adopt the current practice as our
baseline, which is to search every nearby camera for the query identity. This baseline is both
extremely data intensive, and prone to a high rate of false positive matches – by searching
cameras indiscriminately, it encounters a large number of distractor instances, which derail
inference precision [89].

To address these severe cost and accuracy challenges, we present ReXCam – a new system
for efficient cross-camera video analytics. ReXCam exploits spatial and temporal correlations
in large camera networks to reduce the size of the inference search space, and thus dramati-
cally decrease compute cost. Spatial correlations indicate the degree of association between
cameras – the probability that a source camera will send traffic to a particular destination
camera. Temporal correlations indicate the degree of association between cameras over time
– the probability that a source camera will send traffic to a particular destination camera at
a particular time. These correlations, learned offline on historical data, enable ReXCam to
guide its inference-time search toward cameras and frames most likely to contain the query
identity. In doing so, ReXCam is able to both substantially cut down its inference time
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workload, and increase its rate of true positive detections (see Figure 4.1).
ReXCam operates in three phases. In an offline profiling phase, it constructs a cross-

camera correlation model on unlabeled video data, which encodes the locality observed in
historical traffic patterns. This is an expensive one-time operation that requires assigning
identifiers to detected entities with an offline tracker, and then converting these identifiers
into an aggregate profile of cross-camera correlations. At inference time, ReXCam uses this
model to filter frames that are not spatially and temporally correlated to the query identity’s
current position, and thus unlikely to contain its next instance. On occasion, this pruning
will cause ReXCam to miss query detections. In these cases, ReXCam performs a fast-replay
search on recently filtered frames, which uncovers the skipped query instances, and enables
it to gracefully recover into its live cross-camera search.

Together these techniques enable significant improvements over the all-camera baseline.
Evaluating on the well-known DukeMTMC dataset [79], which contains footage from 8 cam-
eras located on the Duke University campus, we find that ReXCam is able to reduce compute
cost by a factor of 4.6× compared to the baseline, while improving precision (fraction of in-
stances correct) by 27%, at the price of just 1.6% lower recall (fraction of instances found).
Moreover, RexCam’s fast-replay search scheme reduces delay by about 50% relative to a
scheme that searches for missed detections at the video frame rate. ReXCam is able to
achieve these gains at a one-time offline profiling cost equal to running 600 real-time queries,
a small value relative to the annual workload in real video analytics operations [99, 100].

We also evaluate our achieved savings factor relative to an oracle that could predict with
certainty at inference time the destination camera for a given query instance. Such an oracle
could achieve at maximum a 7.0× workload reduction over the baseline on 8 cameras. In
comparison, ReXCam, which is trained only on historical data, obtains a 4.6× workload
reduction, a substantial fraction of the oracle’s gains.

4.2 Problem & Motivation

Problem statement

In this section, we study a broad template of cross-camera applications that involve tracking
a person or object of interest, in real time, through a camera network. We call this process
identity tracking. In particular, given a single instance of a query identity q (e.g. a person)
flagged in camera c at frame f , we wish to return all subsequent frames, across all cameras,
in which q appears. This is a bounded process – since q will eventually exit the network, we
must at some point cease our search for q.

While tracking q, we wish to perform well on four metrics:

1. Recall (%) – The ratio of (a) the number of instances of q successfully retrieved to
(b) the total number of instances of q present in the footage after frame f .
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Figure 4.2: DukeMTMC camera network [79]. Labeled regions indicate the visual field of
view of each camera.

2. Precision (%) – The ratio of (a) the number of instances of q successfully retrieved
to (b) the total number of instances of any entity retrieved.

3. Compute cost (in 1000s of frames) – The total number of video frames processed.
We especially wish to avoid processing frames that do not contain q.

Note that processing a frame involves running a compute-intensive machine learning
model (e.g. a convolutional neural network) on the image, to determine if it contains
any instances of q. This is the most expensive component of the video analytics pipeline
(which we describe in Section 4.3). Consequently, number of frames is the key cost
factor we wish to minimize.

4. Delay (sec.) – The lag, in seconds, between receiving a video frame from a camera
and returning an inference decision, i.e. deciding whether the frame contains (or does
not contain) q. This lag, or delay, is a major component of total response latency.

A successful system will achieve high recall (return most instances of q), high precision
(return few instances of other entities), low compute cost (process a small number of video
frames), and low delay (track q in real-time).

Empirical motivation

We now present a short empirical study that establishes the presence of strong cross-camera
correlations in real-world video surveillance data. This in turn motivates the design of a video
analytics system, such as ReXCam, that leverages such correlations to reduce compute cost.

We conduct our study on the DukeMTMC dataset [79], one of the most popular bench-
marks in computer vision for work on person re-identification and tracking [101, 92]. The
dataset contains footage from eight cameras placed on the Duke University campus (see
Figure 4.2), in an area with significant pedestrian traffic. The field of views of the cameras
do not intersect, but the cameras are placed close enough that people frequently appear in
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Figure 4.3: Spatial traffic patterns in the DukeMTMC dataset [79]. Plots display percentage
of outbound traffic that appears at a particular destination. Each plot corresponds to a
particular source camera; each bar to a destination camera. The final bar (*) represents
outbound traffic that exits the network.

multiple cameras. The dataset contains over 2,700 unique identities across 85 minutes of
footage, recorded at 60 frames per second [79].

Spatial locality

Our first finding is that cross-camera traffic demonstrates a high degree of spatial locality.
Here, “traffic” between cameras A and B is defined as the set of unique individuals detected
in camera A that are next detected in camera B. (Any people traversing from A to B via
camera C are excluded from the A → B traffic count.) In particular, we find that cameras
generally only send traffic to a small number of their peers. On the 8-camera Duke dataset,
only 2.0 of 7 potential peers receive more than 10% of the total outbound traffic from a given
camera on average, and only 2.9 of 7 peers receive more than 2%. The full spatial statistics
for Duke are plotted in Figure 4.3.

Exploiting this insight can significantly reduce our compute workload, at little cost to
accuracy, in a large class of surveillance applications. For example, consider a setting in
which we must search for a query identity q (e.g. a person), first detected in camera ci,
among the video feeds of its n− 1 peers. In comparison to a scheme that searches all n− 1
peers indiscriminately, if we search only those peers that receive at least 2% of the traffic
from ci, we reduce our compute workload by almost 60% (we search only 2.9 cameras instead
of 7), while still capturing 98.82% of all detections. (This accuracy figure is computed by
tabulating the total traffic volume absorbed by all cameras receiving at least 2% of traffic,
averaged over all possible source cameras.)
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Figure 4.4: Temporal traffic patterns in the DukeMTMC dataset [79]. Plots display distribu-
tion of inter-camera travel times. Each plot corresponds to traffic to a particular destination
camera. Each colored line represents a particular source camera.

Temporal locality

Our second finding is that cross-camera traffic demonstrates a high degree of temporal lo-
cality. As can be seen in Figure 4.4, travel times between a particular source camera and a
particular destination camera in the Duke dataset are highly localized. This is in line with
our expectations. Since these are static cameras, their pairwise distances di,j are also static.
Assuming that people in the network travel at an average pace p, we would expect travel
times for a given camera pair (i, j) to be clustered around a mean µi,j =

di,j
p

.
What is perhaps surprising is the degree of localization. We quantify localization as the

average standard deviation in travel times σ across every camera pair :

σ =
1

n2

∑
i,j

σi,j (4.1)

where σi,j is the standard deviation in travel times for a particular particular camera pair
(i, j) (the analog to µi,j). Computing this quantity on the Duke dataset, we find that σ = 10.3
seconds. This is relatively small compared to the average mean travel time µ = 44.2 s. across
every camera pair, and the average range in travel times r = 85.0 s.

Temporal locality, like spatial locality, implies potential compute savings. Given the task
of locating a given query identity q, first identified in camera ci, in one of the n− 1 possible
destination cameras, one solution may be to simply search each of the n − 1 cameras for
r = 85 seconds, starting at t = 0, the time at which q first disappears from camera ci. In
such a scheme, we would stop the search as soon as q was rediscovered. In the worst case,
we would search up to 85 seconds. r = 85 s. would thus serve as our exit threshold.

With the above data on past network dynamics, however, we could instead do the fol-
lowing: we could begin our search for q on a particular camera j at ti,j − 2σi,j, and end
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our search for q at ti,j + 2σi,j. (As before, we could stop searching earlier if we discover q
earlier.) Assuming that travel times are distributed normally, we would then capture 95%
of the detections (by the ±2σ → 95% rule), while searching only 4σ

r
= 48%, of the frames

that our fixed baseline searches.

Aggregate gains

Note that the 48% figure is conservative is one respect: we compared to a baseline that, by
stopping the search at r, was itself partially aware of past network dynamics! If we drop this
assumption, however, it becomes harder to quantify potential gains. By exploiting temporal
locality on the 8-camera Duke dataset, we can thus extract at least an additional 52% in
compute savings, over the 60% gain achieved via spatial filtering. Assuming these gains are
independent, a claim we will presently examine, spatial and temporal filtering could yield
up to 80.3% in total savings over a baseline that searches all of the cameras for a fixed time
interval (e.g. r). As we will show in Section 4.8, ReXCam achieves up to a 4.75× reduction
in compute cost, which is quite close to this computed upper bound of a 5× reduction.

Now we address our independence assumption. Gains due to spatial filtering and gains
due to temporal filtering will be independent if (a) the distribution of travel times on a
camera’s closely correlated peers is similar to (b) the distribution of times on the remaining
cameras. Our analysis of the Duke travel times shows that this is indeed the case.

4.3 Background

Video analytics

Video analytics pipelines traditionally consist of a series of modules, which successively de-
code, filter, and or run inference on video feeds. A typical surveillance pipeline may include:
(1) a decode module, which decompresses MPEG-4 video from the camera into individual
JPEG image frames, (2) a difference detector module, which drops frames that have not
changed perceptibly from their preceding frames, (3) an object detection module, which ex-
tracts and classifies objects of interest in each video frame (e.g. people, vehicles), and (4) an
re-identification or tracking module, which given a query image (e.g. of a person), returns the
frames and cameras in which the identity is present. The distinction between re-identification
and tracking is that the latter is iterative, and involves repeatedly re-identifying an entity, in
real-time, through the camera network.

This last module is the most challenging step of most tracking applications. There are
two reasons for this.

Accuracy. First, re-identification (re-id) is highly error-prone [103, 89]. Accurate re-id is
particularly difficult in crowded scenes, and in large camera networks, with significant light-
ing and viewpoint differences across cameras. In particular, surveillance footage is typically
too low-resolution to apply facial recognition techniques, which can be used to distinguish
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and link identities [104]. Instead, re-id models must rely primarily on clothing and profile,
which are much weaker unique identifiers than biometric traits.

Cost. Second, tracking in large camera networks is computationally expensive. Even
tracking a single object through a camera network can potentially require processing ev-
ery subsequent frame, in every camera, after an initial detection (in the absence of good
heuristics for geographic localization). This translates to a large search space, in both the
spatial dimension (number of cameras) and in the temporal dimension (number of frames).
Moreover, unlike a stateless, per-frame task such as object detection (e.g. “flag all frames
containing [buses / trucks / SUVs]”), identity tracking cannot easily be batched (each query
is independent), parallelized (associations span cameras), or pipelined (tracking is state-
ful). These two properties – (1) the large inference space and (2) the sequential execution
requirement – make cost-efficient live execution crucial for tracking workloads.

Key applications

Extensive networks of cameras are already installed in major cities such as London, Beijing,
and Chicago [95, 1, 15] – on rapid transit systems, public buses, airports, corporate campuses,
and city streets [65, 100]. In this section, we briefly survey the main use cases for intelligent
cross-camera analytics systems, which operate on such networks.

Security and counter-terrorism

A key use case for cross-camera re-identification and tracking capabilities is localizing sus-
pects in the aftermath of a security breach or major attack. For example, an on-site camera
may record and flag a trespassing violation or burglary. Given that the perpetrator will then
attempt to exit the premises, re-identification techniques can be used to locate the suspect
in the surrounding network of cameras.

Alternatively, after a major public attack (e.g. on a public transport system), law enforce-
ment may wish to track the accomplices of an identified perpetrator [100]. As a first step,
they may scan a database of stored video for people frequently associated with the identified
assailant [100]. Discovering these people in the aftermath of the attack, however, among the
12,000 cameras feeds installed on the London Underground [11] in a timely, scalable manner
is a daunting live data analytics challenge. Here, cross-camera re-identification and tracking
enables both initial discovery, and subsequent tracking, to allow for police apprehension.

Vehicle tracking

In the U.S. and Europe, AMBER alerts are raised if a child abduction is suspected [4]. Alerts
containing the license plate number, model, and color of the captor’s vehicle are broadcast by
radio, television, and text messages to all citizens in the area [4]. Given camera installments
along highways and city streets, vehicle re-identification and tracking techniques can be used
to locate and keep tabs on the suspect’s vehicle, as police attempt intervention [65].
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Retail and business intelligence

Automated checkout systems, such as Amazon Go, rely on computer vision techniques to
map actions (e.g. picking up an item, returning an item) to people, enabling Amazon to
accurately charge customers for their purchases [3]. In other settings (e.g. large stores,
theme parks), cross-camera analytics techniques can be used to track shopper movement
(to optimize inventory placement), count the number of customers standing in lines (to
plan staff shifts), and identify repeat visitors (to analyze retention) [78, 104, 100]. All of
these applications benefit from improvements in the accuracy and compute efficiency of
re-identification and tracking.

Setup and compute model

In our assumed setup, a camera network consists of k nodes. Each node hosts a high-
definition, closed-circuit television (CCTV) camera with an on-board secure digital (SD)
card, offering a small amount of local disk storage. All nodes are connected to each other
over a high-speed local area network (e.g. Ethernet, Wi-Fi [100]). We assume sufficient
bandwidth on inter-camera network links to transmit video and query metadata. Queries
are issued by an operator in a surveillance center, which could be either located on-site with
the cameras or in a remote location.

For the purposes of this section, we assume that all video is streamed to the cloud
for analytics. In particular, all re-identification and tracking queries are executed in the
cloud, and inference results are streamed to the operator (e.g. in a private web interface)
in step with the live video. This is the most common setup for intelligent video processing
applications (e.g. home security, public surveillance) today. Cloud-based processing has
the benefit of offering a simple, elastic, centralized compute abstraction, which eases some
aspects of implementation (e.g. cross-camera inference).

ReXCam, however, is not bound to this model. We briefly discuss two possible alterna-
tives. First, video could be analyzed on an on-site deployment of server hardware (“edge
cluster”), managed by the same enterprise running the analytics operation (e.g. local po-
lice). Second, video could be analyzed on the camera itself, given a deployment of AI cameras
(“smart cameras”), each of which posses a small processor and hardware accelerator.

A key tradeoff between cloud-based analytics and edge-based analytics is the cost model.
Cloud processing incurs time-rated or usage-rated pricing. Reducing workload translates
directly to fewer GPU instance hours spent on processing, and thus proportionally lower
costs, assuming effective resource utilization. Edge-based processing, in contrast, requires
upfront investment in expensive hardware (e.g. GPU clusters, smart cameras). Reducing
average and peak workloads here enables more video feeds to be processed per GPU, which
in turn reduces hardware requirements. In this model, cost savings could be particularly
substantial for enterprises planning to setup large new analytics operations.
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Figure 4.5: Illustration of identity re-identification.

4.4 System Operation

Identity re-identification

Identity tracking in ReXCam is implemented on a basic computer vision primitive known
as identity re-identification. Given an image of a query identity q, a re-identification (re-
id) algorithm ranks every image gi in a gallery G based on its feature distance to q – a
Euclidean distance metric defined on the space R1×h×w×c of image features (see Figure
4.5). Typically, these features are the intermediate representation of a deep neural network
trained to associate instances of the same (co-identical) entity, and differentiate instances of
different (non-co-identical) entities.

A successful re-id algorithm will rank co-identical (positive) instances to the query more
highly in the list than non-co-identical (negative) instances. By extension, in a perfect re-id
ranking, all i co-identical instances to q present in G appear in the top i list entries. Over
the full set of queries q ∈ Q, a perfect ranking satisfies:

∀q ∈ Q max
p∼q

d(q, p) < min
n�q

d(q, n) (4.2)

where d(·, ·) denotes the feature distance metric, and p and n denote positive and negative
instances, respectively [78].

A re-id ranking is typically evaluated on two metrics. The first is rank-k accuracy, which
is the percentage of the top k list entries that consist of positive examples. Rank-1 accuracy,
for example, indicates how often the top ranked entry in the gallery matches the query. The
second metric is mean average precision (mAP). mAP is a finer-grained accuracy metric
from information retrieval and computer vision that sums the product of (a) precision and
(b) change in recall across every position in the ranking. Both rank-k accuracy and mAP
values fall between 0% and 100%, where 100% indicates a perfect ranking.

Identity tracking

Given the ability to rank a set of detections based on their similarity to a query image, we
can now define and implement cross-camera identity tracking. In tracking, the input consists
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of a query image q, extracted from frame fq on camera cq. The goal is to flag all subsequent
frames, on all cameras, that contain co-identical instances to q, while maximizing two metrics:
(1) recall – the fraction of positive instances successfully retrieved, and (2) precision – the
fraction of retrieved instances that are positive. Note that q can appear again on the same
camera (c = qc), different cameras (c 6= qc), or else exit the network altogether at any point.
Tracking stops when q has deemed to have exited.

Algorithm 3 Tracking in ReXCam.

1: input: video feeds {Vc} for camera c
2: for query (q, fq, cq) ∈ Q do
3: qfeat = features(q) . extract image features
4: fcurr = fq + 1 . init current frame index
5: Mq = [] . init query match array
6: while (fcurr − fq) ≤ exit t do
7: frames = get frames(V, fcurr)
8: gallery = extract entities(frames)
9: ranked = rank reid(qfeat, gallery)
10: if ranked[0][dist] < match thresh then
11: Mq = append(Mq, ranked[0][img])
12: qfeat = update rep(qfeat, ranked[0][feat])
13: fq = fcurr

14: end if
15: fcurr = fcurr + 1
16: end while
17: end for
18: output: matched detections {Mq}

We propose Algorithm 3 for cross-camera identity tracking. Given a set of video feeds
Vc, we wish to execute |Q| separate tracking queries. For each tracking query q, we begin by
extracting image features qfeat and initializing an empty array of discovered matches Mq. We
then proceed to repeatedly: (1) retrieve the current frame from each video feed, (2) extract
entities from each frame using an object detection model, (3) rank the detections based on
their feature distance to q using a re-id model, and (4) check if the distance to the top ranked
detection is within a match threshold.

The match threshold is a binary decision cutoff we impose to convert re-id, a ranking
algorithm, into a classifier. In particular, since it is possible for q to fail to appear in any
camera at a given frame index fcurr (due to occlusions, blind spots in the camera network),
the detection gallery may contain no co-identical instances. Thus, we must determine if the
top match is in fact co-identical. If we decide that it is, we add the detection to our array
of matches Mq, update our query representation qfeat to incorporate the features of the new
instance of q, update the query frame index fq to fcurr, and proceed with tracking q. If we
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instead decide that no co-identical instances are present at fcurr, we increment the current
frame index fcurr, and proceed to search the next set of frames for q.

We continue searching until the gap between the last detected instance of q and our
current frame index exceeds a pre-defined exit threshold (defined as exit t in Algorithm 3).
At this point, we conclude that q must have exited the camera network, and cease tracking
q. We then repeat this process for the next query in Q.

4.5 Spatio-Temporal Correlations

Overview

ReXCam exploits two forms of cross-camera correlations to improve cost efficiency and in-
ference accuracy in multi-camera video analytics. Spatial correlations capture long-term
associations between camera pairs. These include, but are not limited to, associations aris-
ing from camera topology (e.g. nearby cameras tend to send more traffic to each other than
distant cameras). The degree of spatial correlation dsc between two cameras cs, cd is quanti-
fied by the ratio of (a) the number of entities leaving the source camera for the destination
camera, n(cs, cd), to (b) the total number of entities leaving the source camera:

dsc(cs, cd) =
n(cs, cd)∑
i n(cs, ci)

(4.3)

In particular, a camera ci that receives a large fraction of the outgoing traffic from source
camera cs is said to be highly correlated to camera cs. Note that spatial correlations may be
asymmetric. In the previous example, it is possible that camera cs is not highly correlated
with camera ci, even if the converse is true. ReXCam exploits spatial correlations in its
search for a query identity q by prioritizing destination cameras that are highly correlated
to the query camera cq.

Temporal correlations capture associations between camera pairs over time. If a large
percentage of the traffic leaving camera cs for camera cd arrives between t1 and t2, then
camera cd is said to be highly correlated in [t1, t2] to camera cs. The degree of temporal
correlation dtc between two cameras cs, cd during a time interval [t1, t2] is quantified by the
ratio of (a) entities reaching cd from cs during [t1, t2] to (b) total entities reaching cd from cs:

dtc(cs, cd, [t1, t2]) =
n(cs, cd, [t1, t2])

n(cs, cd)
(4.4)

Like spatial correlations, temporal correlations can be asymmetric, with arrival counts peak-
ing at different time intervals in the different directions. Note also that camera cd can be
temporally correlated to cs at time t, without cd being spatially correlated to cs, if most
of the small amount of traffic from cs to cd arrives around t. ReXCam exploits temporal
correlations in its search for q by prioritizing the time window [t1, t2] in which a destination
camera is most correlated with the query camera cq.
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Spatio-temporal model

Given a source camera cs, the current frame index fcurr, which serves as a timestamp, and
a destination camera cd, our proposed spatio-temporal model M outputs true if cd is both
spatially correlated and temporally correlated with cs at fcurr, and false otherwise.

The thresholds for being spatially correlated with cs, and temporally correlated with cs
at time fcurr, are model parameters set by the system operator. As an example, we may
first wish to search cameras receiving at least sthresh = 5% of traffic from cs, during the time
window containing the first 1 − tthresh = 98% of traffic from cs. These parameter settings
exclude both outlier cameras (cameras receiving less than 5% of the traffic from cs) and
outlier frames (frames containing either the last 2% of traffic or no traffic from cs).

Once built, M will only output true (i.e. 1) if both conditions sthresh and tthresh are met
at fcurr. Formally:

M(cs, cd, fcurr) =


1, dsc(cs, cd) ≥ sthresh

and

dtc(cs, cd, [f0, fcurr]) ≤ 1− tthresh

0, otherwise

(4.5)

Here f0 is the frame index at which the first historical arrival at cd from cs was recorded. Our
temporal filter checks if the volume of historical traffic that arrived at cd between [f0, fcurr]
is less than 1− tthresh% of the total traffic. This ensures that fcurr falls in the “dense” part
of the travel time distribution, where we are likely to find q.

Our model M encodes the spatial and temporal locality inherent in the camera network
(see Section 4.2). By first examining spatio-temporally correlated camera frames, we explore
the part of the inference space most likely to contain q. A “cache hit” reduces inference
cost, as we avoid searching the entire space of detections at fcurr. On the other hand, on a
“cache miss”, we must subsequently process the remainder of the inference space. On these
rarer cache misses, using M incurs a penalty, as this procedure introduces delay : instead of
detecting q in real-time, we must find q in past video frames in our second pass through V .
If cache misses are rare enough, and we can mitigate the delay they introduce (Section 4.7),
then such a system will outperform one that is locality-agnostic.
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Cost savings

We can quantify the savings achieved by spatio-temporal filtering, compared to a baseline
that applies no filtering and thereby searches all cameras, with the following cost ratio:

rc =
cdet

baseline + cfeat
baseline + creid

baseline

cdet
st-filter + cfeat

st-filter + creid
st-filter

(4.6)

=
cdet|V |+ cfeat|V | · d̄+ creid|V | · d̄

cdet|Vcorr|+ cfeat|Vcorr| · d̄+ creid|Vcorr| · d̄
(4.7)

=
|V |
|Vcorr|

(4.8)

where |V | refers to the total number of cameras, |Vcorr| the number of cameras correlated with
the query camera cq at fcurr, and d̄ the average number of entity detections per camera frame,
while cdet, cfeat, cre-id represent the costs of running object detection, extracting features,
and computing re-id feature distance to q, respectively, for a single frame or detection (see
Algorithm 3). Equation 4.8 signifies that the achieved savings factor rc reduces to the ratio
of (a) the total number of cameras |V | and (b) the number of correlated cameras |Vcorr| at a
given frame step. While |Vcorr| varies based on cq and fcurr, we see that, on average, achieved
savings are proportional to the degree of correlation filtering.

Applying the model

Applying such a spatio-temporal model involves a series of small modifications to the cross-
camera tracking algorithm (see Algorithm 4). First, in addition to the video feeds {Vc},
we must pass as input the spatio-temporal model itself. The model is represented as two
filters, both of which return {true, false} values: (1) spatial corr(cs, cd), which given a
source camera cs and a destination camera cd returns true if cd is correlated with cs, and
(2) temporal corr(cs, cd, f), which given a source camera cs, a destination camera cd, and
a frame index f , returns true if cd is correlated with cs at f . At query time, these two
functions are passed to a higher-order filter function, which given a list of video feeds V ,
returns the subset of V that is both spatially and temporally correlated to cq at fcurr.

Applying filter reduces the inference search space, at each frame step fcurr, from all entity
detections at fcurr on every camera to all entity detections at fcurr on correlated cameras.
This allows us to abstain from running object detection and feature extraction models on
non-correlated cameras, and reduces the size of the re-id gallery in the ranking step.

The penalty paid for this reduced compute cost is missed true positive detections. While
we expect instances of q to appear on correlated cameras at peak times in general, we also
expect occasions where this will not be the case. When q reappears on non-correlated cameras
or at non-peak times, we will fail to rediscover q, and at fcurr = fq+exit t, incorrectly declare
that q has exited. To address this issue, we introduce a conditional second phase to Alg. 4,
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Algorithm 4 Tracking with the spatio-temporal model

1: input: video feeds {Vc} for camera c,
2: spatial corr(cs, cd)→ {true, false}
3: temporal corr(cs, cd, f)→ {true, false}
4: for query (q, fq, cq) ∈ Q do
5: qfeat = features(q) . extract image features
6: fcurr = fq + 1 . init current frame index
7: Mq = [] . init query match array
8: phase = 1 . start phase one
9: while (fcurr − fq) ≤ exit t do
10: Vcorr = filter(sp corr, tp corr, cq, fcurr, V )
11: frames = get frames(Vcorr, fcurr)
12: gallery = extract entities(frames)
13: ranked = rank reid(qfeat, gallery)
14: if ranked[0][dist] < match thresh then
15: Mq = append(Mq, ranked[0][img])
16: qfeat = update rep(qfeat, ranked[0][feat])
17: fq = fcurr

18: phase = 1 . reset to phase one
19: end if
20: fcurr = fcurr + 1
21: if phase = 1 and (fcurr − fq) > exit t then
22: fcurr = fq + 1 . reset frame index
23: sp corr = ¬sp corr . invert spatial filter
24: phase = 2 . start phase two
25: end if
26: end while
27: end for
28: output: matched detections {Mq}
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which we call replay search. Given no matches on the correlated cameras from fcurr = fq + 1
to fcurr = fq + exit t, we regress to searching the cameras not correlated with cq. One way
to implement this is to negate the output of the correlation filter spatial corr(cs, cd), and
instead filter the cameras in V that we have already searched.

In particular, phase two of Alg. 4 (lines 21-24) initiates when we cross the exit threshold
(exit t), which signifies that either we have missed q by pruning the search space, or that q
has in fact exited the camera network. To rule out the former possibility, we reset fcurr to
the query frame index fq, and invert our spatial correlation filter spatial corr(cs, cd). We
then restart the tracking procedure from fcurr = fq + 1, looking for the next instance of q in
video feeds not spatially correlated with cq. If we do discover an instance of q, we proceed
with tracking from that detection, initiating a new phase one. If we do not, then we cease
our search for q at the exit threshold, as in the original algorithm (Alg. 3).

Note that regressing to the baseline involves searching for q in historical video. Doing
this efficiently, and mitigating the delay we accumulate by searching for q in the past, while
the live video stream progresses, is a key challenge introduced by spatio-temporal filtering.
We discuss our solution, a fast-replay search mode, in Section 4.7.

4.6 Offline Profiling

How do we generate a model of spatio-temporal correlations? One approach that builds
on standard techniques from computer vision is to use an offline multi-target, multi-camera
(MTMC) tracker to label every entity detection in a dataset of historical video, collated
from the same camera deployment on which the live tracking is executed. The goal of an
MTMC tracker is to accurately map instances of the same entity, detected across frames and
across cameras, to the same entity identifier. In the output of the tracker, each detected
entity instance i is represented as a tuple, (ci, fi, ei), containing the camera identifier ci,
frame index fi, and entity identifier ei for the detection, respectively.

Using this labeling, one can then compute two quantities:

1. n(cs, cd) – the total number of entities leaving a source camera cs for a destination
camera cd

2. n(cs, cd, [t, t + 1]) – the total number of entities reaching cd from cs within the time
interval [t, t+ 1]

for all cameras cs and cd, and each time interval [t, t+ 1].
These quantities translate directly to our spatio-temporal model M (see Section 4.5). In

particular, by normalizing (1) and imposing a specific spatial traffic cutoff sthresh (e.g. 5%),
we obtain our spatial filter:

spatial corr(cs, cd) =
n(cs, cd)∑
i n(cs, ci)

≥ sthresh (4.9)
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By normalizing (2) and imposing a specific temporal cutoff tthresh (e.g. 2%), we obtain
our temporal filter:

temporal corr(cs, cd, f) =
n(cs, cd, [f0, f ])

n(cs, cd)
≤ 1− tthresh (4.10)

Note that these are simply the two sub-conditions, passed to our tracking executor, of our
full model M from Equation 4.5.

A multi-target, multi-camera (MTMC) tracker differs from the tracking module outlined
in Algorithms 3 and 4 in that it tracks all entities in the dataset. This is needed to build a
robust model of cross-camera traffic patterns. (In contrast, Algorithms 3 and 4 implement
single-target tracking, which is the key application of interest in real-time security applica-
tions.) MTMC tracking is a highly intensive profiling operation that is typically performed
offline on a static dataset [101, 78]. MTMC tracking exploits techniques from both com-
puter vision (e.g. appearance matching, motion correlation) and combinatorial optimization
(e.g. maximum bipartite matching, correlation clustering) [101, 78] to find the best possible
assignment of identities to people. One accuracy metric that is commonly used to evaluate
an MTMC tracker is its F1 score, the harmonic mean of its recall and precision [78].

Note that a tradeoff exists between the robustness of offline profiling and the accuracy of
subsequent single-target tracking using the generated model. In particular, profiling cost can
be reduced by labeling fewer frames with the MTMC tracker (e.g. by selecting a lower frame
sampling rate or choosing a smaller subset of the data to label). This, however, magnifies the
impact of labeling error and biased sampling, which in turn can translate to a weaker spatio-
temporal model. For example, if too few frames are labeled, certain cross-camera correlations
may be excluded or exaggerated (e.g. the spatial association between two cameras cs and cd).
We explore this tradeoff between one-time profiling cost and tracking accuracy in Section 4.8.

4.7 Fast-Replay Search

Utilizing spatio-temporal correlations has a fundamental cost: missed true positive detections
of the query identity q, which would be discovered by a baseline that searches all of the
cameras. Our solution in Section 4.5 is to initiate a second pass through the video frames on
cameras we did not previously examine, which we call replay search. This introduces delay
in our cross-camera tracking, as we search past frames while the live video progresses.

Delay is the gap, in seconds, between the position of the tracker and the position of the
live video stream. This quantity is 0 for a query if ReXCam never performs replay search.
On the other hand, each instance of replay search introduces d seconds of delay. This can
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Figure 4.6: DukeMTMC camera network [79]

be calculated as follows:

d =
(fq + exit t)− fq

r
(4.11)

=
exit t

r
(4.12)

where r is the frame rate of the tracker during fast-replay search. This is the time required
to return to the tracker’s original position in the video (before it began replay search),
fq + exit t. Since we start our replay search at fq, this is an effective distance of exit t.

Note that can choose our tracker’s frame rate, r. Typically, this is just the video frame
rate (e.g. 30 fps). However, in fast-replay search, we explicitly choose to operate at a
faster-than-real-time frame rate to minimize the per-instance delay d.

In ReXCam, a higher frame rate is achieved by assuming one of two operational modes:

1. Skip frame mode – Employs a lower frame sampling rate on historical video frames to
increase throughput, at the cost of lower accuracy.

2. Fast-forward mode – Employs a higher frame processing rate (e.g. via parallelization)
to increase throughput, at the cost of increased resource usage.

Both the skip frame mode and the fast-forward mode have trade-offs: the former raises the
likelihood of missed detections, while the later increases resource usage.

We implement both solutions, and investigate their trade-offs, in our experimental eval-
uation (Section 4.8).

4.8 Experiments

Dataset

We evaluate on the DukeMTMC dataset [79], a large-scale video surveillance dataset with
footage from eight cameras installed on the Duke University campus (see Figure 4.6). The
data consists of 85 minutes of 1080p video from each camera recorded at 60 frames per
second. In all, the footage contains over 2,700 unique identities and over 4 million distinct
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person detections. The dataset is meticulously labeled with person identities and bounding
boxes, with annotations available for 2 million frames. The data is split into a 50 minute
train/val set and a 35 minute test set.

Implementation

For our re-identification model, we use an open-source, ResNet-50-based implementation
of person re-identification [26], trained in PyTorch on a subset of the Duke dataset called
DukeMTMC-reID [27]. We then propose and implement our own version of tracking (see
Algorithms 3, 4), which applies this model iteratively at inference time to discover all in-
stances of a query identity in the Duke dataset. Our cross-camera person tracking testbed
is open-source on GitHub [24].

To build our spatio-temporal model on unlabeled video data (simulating real deployment
conditions), we apply an offline multi-target multi-camera (MTMC) tracker [69], as described
in Section 4.6, to label every person detection in a subset of the Duke train set. We then
implement a profiler to extract spatial and temporal correlation statistics from these labels.
Note that the profiler implements Equations 4.9 and 4.10, yielding the spatial and temporal
correlation filters used at inference time.

Evaluation Setup

Our evaluation procedure consists of running a set of 100 tracking queries, {qi}, drawn from
the test query partition of the DukeMTMC-reID dataset [27]. Each tracking query consists
of multiple iterations. Each iteration involves searching for the next instance, qji , of the query
identity in the dataset, starting with the initial instance q0

i . A tracking query terminates
when no more instances can be found.

We report four metrics – compute cost, recall, precision, and delay – which are computed
over the entire 100 query test set. As described in the Problem Statement (Section 4.2),
these metrics correspond to the following quantities:

1. Compute cost – Number of video frames processed, aggregated over all queries {qi}.

2. Recall (%) – Ratio of query instances retrieved to all query instances in dataset, qji .

3. Precision (%) – Ratio of query instances retrieved to all retrieved instances, rji .

4. Delay (sec.) – Lag between position of tracker and current video frame, converted
to seconds, at the end of a tracking query. Note that this will be 0 for a query if no
replay search was performed.

Compute cost, recall, and precision are reported in aggregation. Delay is reported as an
average value per query.

We conducted our experiments on AWS EC2 p2.xlarge instances, which each contain one
Nvidia Tesla K80 GPU.
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Results

Spatio-temporal filtering

To evaluate our core spatio-temporal filtering scheme, we compare two high-level systems:

1. Baseline - Searches for query identity q in all the cameras at every frame step. Im-
plementation of Alg. 3. Uses state-of-the-art person re-identification model [26].

2. ReXCam - Searches for query identity q only on cameras that are currently spatio-
temporally correlated with cq. Implementation of Alg. 4. Uses same person re-
identification model as baseline [26].

In particular, we consider various versions of (2) corresponding to different levels of spatio-
temporal filtering:

(a) Spatial-1% - Filters cameras that receive less than 1% of the traffic from query camera
cq. (S1)

(b) Spatial-5% - Filters cameras that receive less than 5% of the traffic from query camera
cq. (S5)

(c) Spatial-1%, Temporal-1% - Filters cameras that receive less than 1% of the traffic
from query camera cq. In addition, filter frames outside the time window containing
the first 99% of traffic from cq. (S1-T1)

(d) Spatial-5%, Temporal-1% - Filters cameras that receive less than 5% of the traffic
from query camera cq. In addition, filter frames outside the time window containing
the first 99% of traffic from cq. (S5-T1) (ReXCam-Optimal)

(e) Spatial-5%, Temporal-2% - Filters cameras that receive less than 5% of the traffic
from query camera cq. In addition, filter frames outside the time window containing
the first 98% of traffic from cq. (S5-T2)

Note that the baseline utilizes no spatio-temporal filtering. ReXCam versions S1 and
S5 utilize only spatial filtering. RexCam versions S1-T1, S5-T1, and S5-T2 utilize spatio-
temporal filtering.

As discussed in Section 4.5, the level of spatio-temporal filtering is quantified by two
model parameters. Spatial filtering is quantified by the spatial traffic threshold sthresh, which
represents the minimum percentage of traffic a camera must receive to be searched. In our
evaluation, we consider two possible settings, sthresh = 1% and sthresh = 5%.

Temporal filtering is quantified by the temporal traffic threshold, tthresh, which specifies
the time window of frames that we search on a destination camera cd. In all cases, we begin
our search at the time t0 at which the first historical arrival at cd was recorded (e.g. t0 = 3.2
s). We terminate our search at the time exit t, which marks the point at which 1 − tthresh

percent of the historical traffic had arrived. For example, if tthresh = 2%, we search until
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Figure 4.7: Results for all-camera baseline (tan) vs. five versions of ReXCam (blues). Each
ReXCam version is coded as Ss-Tt, where s indicates the spatial filtering threshold (e.g.
s = 5%) and t indicates the temporal filtering threshold. Higher values of s and t indicate
more aggressive filtering. (No t value indicates no temporal filtering.) All ReXCam schemes
(1) reduce compute cost and (2) improve precision over the baseline. We argue S5-T1 (*)
offers the best trade-off on all four metrics.

the time exit t such that 98% of the historical traffic had arrived at camera cd. We do this
to avoid searching frames in which traffic is unlikely to arrive. (Our goal is to cut down
on compute cost without impacting accuracy.) In our evaluation, we consider two possible
settings, tthresh = 1% and tthresh = 2%.

In Figure 4.7, we compare the performance of the baseline and ReXCam versions (a) -
(e). In general, we find that ReXCam significantly outperforms the baseline, by (1) reducing
compute cost and (2) improving precision, while maintaining comparable recall. As we will
show in the following discussion, we believe that ReXCam version (d), in particular, offers
the best trade-off between compute cost, recall, precision, and delay. We term this scheme
ReXCam-O(ptimal). We now compare the six schemes:

1. Compute cost – The baseline is by far the most compute-intensive system, processing
106,300 frames to execute 100 queries on the Duke dataset (Figure 4.7). Each successive
version of ReXCam ((a) - (e)) achieves lower compute cost than its predecessor. The
most aggressive version of ReXCam, S5-T2, processes only 22,400 frames, and achieves
4.75× lower compute cost on 8 cameras than the all-camera baseline.

In comparison, ReXCam-O processes 23,200 frames, which translates to 4.58× lower
compute cost than the all-camera baseline.

2. Recall (%) – Note here an interesting effect. Our baseline achieves recall of 59.1%,
which published results for the DukeMTMC dataset [26]. Recall improves slightly
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over the all-camera baseline with the advent of spatial filtering (S1, S0), but declines
slightly when temporal filtering is introduced.

Details: Both spatial-only schemes achieve 59.4% recall. ReXCam-O achieves 57.5%,
a 1.6% drop from the baseline. S5-T2 achieves 55.7%, a 3.4% drop.

Spatial filtering improves recall because we search fewer irrelevant cameras, reducing
false positive matches, which in turn derail subsequent tracking accuracy. Temporal
filtering reduces recall because we deliberately skip over outlier detections (the last
1-2% of traffic) to reduce compute cost. In general, both effects are small.

In particular, ReXCam-O’s 1.6% drop in recall is a small price to pay for a 4.58×
decrease in compute cost, and significant gains in precision, discussed next.

3. Precision (%) – Our baseline achieves precision of 51.5%. All version of ReXCam
improve on this, but ReXCam-O in particular achieves 78.7% precision, which is a
gain of 27.2% over the baseline.

Higher precision is one of the two key ways in which spatio-temporal filtering improves
on the current practice in cross-camera video analytics. By searching fewer irrelevant
cameras, and fewer irrelevant frames, ReXCam is less likely to declare matches on
persons that do not actually match the query. ReXCam thus addresses a well-known
challenge in large-scale, image retrieval.

4. Delay (sec.) – Here we report total cumulative lag (lag in the absence of fast-replay
search (Section 4.7)), averaged over all 100 queries.

We find that delay is highest with spatial-only filtering (e.g. S5) because every time
ReXCam regresses to the baseline, it must search every skipped camera for a fixed
duration. Lacking any camera-specific temporal information (i.e. tthresh), this is the
best it can do. This introduces a fixed delay of exit t seconds with every instance of
regression (see Algorithm 4).

Delay is also higher with more spatial filtering (e.g. S5, S5-T1) as there are more
instances of regressions. ReXCam-O in particular incurs moderate delay – less delay
than S1 and S5 but more delay than S1-T1.

Given this analysis, we believe that ReXCam-O offers the best possible tradeoffs be-
tween the four metrics – achieving nearly the lowest compute cost (4.6× lower), nearly the
highest precision (27% higher), competitive recall (1.6% lower), and moderate cumulative
lag (5.2 seconds), when compared to the locality-agnostic, all-camera baseline.

Fast-replay search

In this section, we evaluate the efficacy of fast-reply search in eliminating lag (see Figure
4.8). In particular, we consider the two proposed schemes from Section 4.7:
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Figure 4.8: Fast-replay search evaluation. Schemes compared: baseline, ReXCam-O (no
fast-replay), ReXCam-O (2× skip), ReXCam-O (2× fast-forward). We find that scheme 2×
skip outperforms 2× fast-forward on both compute cost and delay reduction.

1. Skip frame mode - Employ a x
2

frame sampling rate to increase throughput on historical
frames, at the price of lower accuracy (via missed detections). (2x skip)

2. Fast-forward mode - Employ a 2x frame processing rate to increase throughput, at the
price of increased compute cost (via increased resource usage). (2x ff)

Both schemes are applied to ReXCam-O, and compared to (a) the all-camera baseline and
(b) ReXCam-O with the default real-time replay search, which incurs 5.2 s of delay.

We find that both 2x skip and 2x ff achieve similar delay reductions, decreasing final
cumulative lag to 2.6 and 3.0 seconds, respectively. However, these reductions come with
different tradeoffs. 2x skip reduces recall by 0.1% to 57.4%, but increases compute cost
savings from 4.58× to 4.84× better than the baseline (by processing fewer historical frames).
2x ff does not impact recall, but reduces compute cost savings from 4.58× to only 4.28×
better than the baseline. Neither scheme impacts precision.

Taken together, these results demonstrate that 2x skip is the stronger scheme, as it
reduces compute cost (instead of increasing it) and slightly outperforms 2x ff on delay
reduction, while recording negligible impact on recall.

In general, by implementing fast-replay search (2x skip), we are able to reduce delay by
exactly 50% (from 5.2 to 2.6 seconds), at the cost of only 0.1% lower recall.

Profiling cost vs. tracking accuracy

In this final experiment, we investigate the trade-off between profiling cost and subsequent
tracking accuracy. Noting that offline profiling cost scales with the number of frames that
must be processed by the MTMC tracker (Section 4.6), we test whether we can build a
robust spatio-temporal model on successively smaller subsets of the training data.
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Figure 4.9: Offline profiling cost vs. online accuracy. Profile intervals compared (in minutes
of data used per camera): 16.6 min. (full), 12.5 min., 8.3 min. (half), 4.15 min.

As Figure 4.9 indicates, there is a clear trade-off between cost and tracking recall
(accuracy). Our default setting, from ReXCam-O, is to run the MTMC tracker on the
full 0.48 million frames that comprise the trainval-mini partition of the Duke dataset
(intended for offline profiling), which results in 1.19 million labeled detections. Building the
spatio-temporal model M from these detections results in tracking recall of 57.5%.

This figure declines steadily, from 57.5% to 40.2%, as we confine our MTMC tracker to
label first three-fourths, then one-half, and finally one-fourth of the full 0.48 million frames in
the trainval-mini partition. In general, we see that tracking recall varies roughly linearly
with profiling cost. On the other hand, precision shows no clear trend (besides its initial
rise), fluctuating between 74% and 82%.

End-to-end evaluation

The profiling cost figures from Section 4.8 allow us to evaluate the end-to-end gains achieved
with spatio-temporal filtering. To obtain ReXCam-O’s accuracy numbers requires us to
process 0.48 million frames. Running ReXCam saves us on average 830 detections per query
at inference time (see Figure 4.7), compared to the all-camera baseline, which requires no
offline profiling. At that rate, ReXCam would need to run 580 live tracking queries to
break-even with locality-agnostic tracking. This represents a small fraction of the expected
annual workload in large video analytics operations (e.g. the Chicago Police Department’s
surveillance system [15]) [100, 99].



CHAPTER 4. REXCAM: RESOURCE-EFFICIENT CROSS-CAMERA ANALYTICS 57

4.9 Related Work

Systems for Video Analytics

Since 2016, a sizable body of work on video analytics has emerged in the systems and data
management community. We briefly survey five key papers. Optasia parallelizes video query
plans and de-duplicates the work of common modules (e.g. background subtraction) in
a dataflow framework to improve query completion time and reduce resource usage [65].
VideoStorm investigates the variance in quality-lag requirements between common video
analytics queries (e.g. scanning license plates for billing on toll routes vs. issuing AMBER
Alerts), and proposes an offline profiler and online scheduler for their optimal execution [99].
NoScope accepts specialized queries (e.g. “find all frames with buses in the Taipei feed”),
and constructs a model cascade exploiting difference detectors and specialized models to
achieve speedups on most inputs [55]. Focus invokes object clustering and low-cost models
to cheaply index video at ingest time, and thereby support low-latency, after-the-fact queries
on historical video [45]. Chameleon exploits correlations in camera content (e.g. velocity
and sizes of detected objects) to amortize profiling costs across cameras over time [54].

This preceding work leaves three key problem areas unexplored.
First, all of these papers focus on single-frame analytics tasks (e.g. license plate recogni-

tion, binary frame classification, object detection), which are stateless and easily parallelized.
In contrast, many real surveillance applications involve interactive or long-running queries
(e.g. multi-frame tracking), where future questions are dependent on past inference results.
In particular, ReXCam executes real-time tracking, a task that is difficult to parallelize or
pipeline, and entails compounding classification errors (i.e. misidentifying a person at time
t affects all future tracking behavior).

Second, all of these papers study single-camera analytics tasks. While some propose joint
execution plans and shared profiling [65, 54] as means to reduce redundant work, none explore
the complexities involved in cross-camera inference (e.g. occlusions, perspective shifts) or
collaborative execution (e.g. intermediate state sharing), a defining component of many key
applications, such as person re-identification. Moreover, none model the dynamics of the
camera network itself to inform future inference decisions, as ReXCam does by profiling
cross-camera traffic patterns.

Third, all focus on standard classification tasks, where objects or activities of interest at
inference time fall neatly into classes seen at training time. In contrast, many real security
applications involve searching for new object instances (e.g. a suspicious person), or detecting
highly anomalous behavior (e.g. a bomb setup), given training data skewed overwhelmingly
toward negative examples. ReXCam focuses exclusively on tasks for the first type, termed
instance retrieval, on which current techniques achieve low precision [89]. This is because,
in large datasets, many detected entities tend to match against the query identity, of which
there are only a few instances, and which was likely never seen at training time. Given this
property, systems level insights – such as our observation that cameras tend to share traffic
with only a small set of neighboring nodes – can yield particularly substantial accuracy gains.
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Efficient Machine Learning

Techniques in machine learning that addresses the bandwidth, memory, and compute costs
of deploying large models fall largely into two categories: (1) training-time optimizations
and (2) inference-time optimizations.

Training-time optimizations can be broadly characterized as efforts to compress accurate
but expensive models. Proposed techniques include parameter and filter pruning [43, 59],
compact architecture design [47, 63], knowledge distillation [44, 40, 6], and model special-
ization [55, 45]. In general, these techniques are orthogonal to ReXCam, which would gain
from any reduction in the inference cost or memory size of the models it deploys.

Work on efficient inference generally aims to address a constrained optimization prob-
lem: maximize accuracy or minimize resource usage, given specific constraints on resource
availability or latency (i.e. SLOs). Prior work explores resource-aware scheduling [42, 29],
low-latency prediction serving [23], edge-cloud compute partitioning [100, 21], hardware-
specific optimizations [46, 68], and multi-tenant resource sharing [61, 53]. Unlike these
systems, ReXCam does not aim to multiplex heterogeneous models, nor does it espouse a
particular compute model (e.g. mobile, edge-cloud hybrid). Instead, ReXCam entails a new
approach altogether to reducing resource usage: instead of operating cheaper models, run
inference on less data. Its mechanism for doing so is to exploit spatial and temporal locality
in the data source (the camera network).

Computer Vision

ReXCam is most closely related to computer vision literature on person re-identification
and multi-target, multi-camera (MTMC) tracking. Papers in this area generally make one
of three types of contributions: (1) new datasets [79, 104, 92, 89], (2) new neural network
architectures [104, 92, 89], or (3) new training schemes [78, 104, 92].

Examples of new architectures include networks for joint detection and re-identification
[104, 92], and networks that enable better generalization (i.e. transfer learning) to new
datasets [89]. Examples of new training schemes include new loss functions [78, 92] and new
data sampling techniques (e.g. hard-identity mining [78], confidence weighting [104]).

In general, the vision literature does not address the inference cost of re-identification
and MTMC tracking, nor does it study online tracking, a key application of interest in real
surveillance systems. While prior work has explored the use of network topology information
to improve tracking accuracy, it has generally confined itself to explicitly learning epipolar
geometry in offline settings with classical vision techniques [51, 13, 58, 67, 14].

Visual Data Management

A body of work also exists in the data management space on storing querying content in
image and video databases. These systems explore the use of classical computer vision
techniques (e.g. clustering by low-level features, such as color and texture) to index image
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and video efficiently, and focus on relational, historical data stores [72, 35, 7, 16, 73]. We
build on this tradition, revisiting large-scale visual analytics in the context of cross-camera
inference on live video with modern computer vision (e.g. deep learning-based) techniques,
a setting that entails substantially different challenges than the target domain of older work.

4.10 Conclusions

Cross-camera analytics is a capability that underpins a range of real video analytics applica-
tions, from public safety monitoring and suspect tracking to intelligent retail and automated
checkout. To address the cost challenges of processing every raw video frame in a large
camera deployment, we present ReXCam, an efficient cross-analytics video analytics system
that leverages a learned model of cross-camera correlations to drastically reduce the size
of the inference time search space. ReXCam builds this model on unlabeled video data,
by aggregating data on cross-camera traffic patterns into spatial and temporal filters. In
the case of occasional missed detections, ReXCam performs a fast-replay search to uncover
skipped detections on recently filtered frames. Combining these techniques, ReXCam is able
to reduce compute workload by 4.6× and improve inference precision by 27% on an eight
camera dataset, while maintaining with 1-2% of the recall of a locality-agnostic baseline.
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Chapter 5

Conclusion

In this thesis, I discuss two lines of research: high-throughput perception on video streams
and low-cost analytics on multiple live video feeds. These two bodies of work are united by
a common theme: the efficient execution of deep convolutional neural networks on video.

On the perception side, I leverage temporal structure in video to reuse intermediate
frame representations, and thereby amortize feature computation cost across frames. On
the analytics side, I leverage spatial and temporal correlations in video networks to carefully
constrain the scope of queries at inference time, thereby substantially reducing workload.

At a high level, work on performance-oriented computer vision is motivated by new appli-
cation requirements. The control module in an autonomous vehicle demands detailed object
and scene annotations from the upstream perception module, at high temporal resolution.
This necessitates high-frame rate object detection, scene segmentation, and prediction. In a
similar vein, cross-camera object tracking requires efficiently scanning large volumes of in-
coming live video. This necessitates low-latency inference, but also low, per-camera compute
cost, to support execution on large camera networks.

This thesis, which addresses the joint challenges of high accuracy and high performance,
represents a step toward realizing these and other emerging computer vision applications.
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